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ABSTRACT

With current advances in electronics, numerical methods once applicable
only to analog design are becoming essential for digital design as well. The
scale of present day analog and, particularly, digital design requires that
the traditional numerical techniques for analysis and simulation be much
more effective than in the past. Development of not only efficient, but
gracefully scalable numerical methods is a top priority in Electronics
Design Automation. This work attempts to treat the problem of efficient
and scalable numerical methods for EDA in the scope of multiresolution
analysis. It shows how analysis and simulation problems can be treated
in a systematic way based on the generalized operator equation formula-
tion. Wavelet bases are presented within this framework. The thesis puts

particular emphasis on the circuit analysis and simulations applications.

The thesis presents a newly developed Harmonic Balance-like method for
steady state analysis of nonlinear circuits under periodic excitations,
which is representative of the class of problems described by nonlinear
differential equations. The technique features sparse representation of
both derivative operator and nonlinear term and shows significant advan-
tage over traditional methods, particularly for analysis of large scale,

highly nonlinear, multitone and broadband circuits.

A number of other applications are also considered, namely transient
analysis of nonlinear circuits, interconnect macromodelling and capaci-
tance extraction for multiconductor transmission lines. A new approach
to capacitance extraction using wavelets is presented featuring extremely

aggressive thresholding of the stiffness matrix.
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1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

This thesis is dedicated to the treatment of selected problems in Electron-
ics Design Automation (EDA) in general, and circuit analysis in particular,
with the help of wavelets. The broad range of numerical problems arising
in EDA field can be systematically treated in the mathematical framework
of functional analysis, linear algebra and approximation theory. From the
mathematical point of view, most of these problems can be represented in
the form of either differential or integral operator equations. With such
approach, wavelet methods become very mainstream. In fact, the only dif-
ference is that wavelets are just another basis for expansion of operator
equations. This basis, however, possesses some special properties that,
when taken proper advantage of, can provide algorithms that are signifi-
cantly superior to the ones utilizing traditional bases in terms of accu-

racy, speed and memory storage requirements.

Over the past 15 years substantial progress has been made in the devel-
opment of both wavelet theory and applications. However, among many
applications of wavelets, numerical analysis has often been overlooked in
favour of signal processing and approximation theory. Moreover, if we

look at the numerical applications, EDA problems in particular have not
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been thoroughly studied. From a number of publications that appeared in
the last 10 years, many seem to suffer from the same syndrome “let’'s
show that this can be also done with wavelets” rather than concentrating
on development of fast algorithms that take advantage of wavelet proper-
ties. Development of the mathematical theory of wavelets initially caused
certain excitement in the scientific computations community, however we
will show that not all applications of wavelets result in immediate advan-
tages, particularly in terms of efficiency. Great care should be taken with
respect to claims of efficiency. In some cases, established traditional non-
wavelet methods are so well researched, engineered and implemented,
that direct CPU time comparison does not show particular advantage of

wavelet methods.

1.2 OUTLINE OF THE THESIS

This thesis is organized as following.

Chapter 2 contains essential mathematical background from the areas
that are necessary to understand the applications described further. We
start with overview of linear analysis, Hilbert spaces and operators and
proceed to derive wavelet formulation on simple illustrated examples
leading to a concept of multiresolution analysis. The chapter concludes

with discussion of wavelet properties and Fast Wavelet Transform.
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One of the reasons for the slow introduction of wavelets into the engineer-
ing curricula is the visible lack of accessible texts, particularly concen-
trating on the numerical applications. The only one that, in author’s
opinion, presents theory in a proper manner ([8]) is written by a physicist,
not an engineer (although approach is quite similar), and was published
by a university in Switzerland, thus not widely known and available. This
is the motivation behind inclusion of a rather lengthy wavelet background
in Chapter 2. This material should not be viewed as a comprehensive
wavelet tutorial, but should contain all the background relevant to the

discussed applications.

Chapter 3 considers application of wavelets to the solution of steady state
analysis of nonlinear circuits. This problem is described by a nonlinear
ordinary differential equation with periodic boundary condition. We aban-
don the traditional approach of expanding the equation in Fourier basis
in favour of wavelet bases. Because of their local support, wavelet bases
provide sparse O(N) representation for the Jacobian matrix. Computa-
tional cost analysis is performed that shows that wavelet expansion gains
significant advantage over traditional approach, particularly for multi-
tone, highly nonlinear, large scale and broadband circuits. Theoretical

results are supported by two numerical case studies.

Chapter 4 addresses other applications of wavelets to the analysis of

lumped and distributed parameter circuits. First, we review transient
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analysis of nonlinear lumped parameter circuits and conclude that in this
area it is extremely difficult for wavelet methods to compete with estab-
lished time marching schemes. The rest of the chapter is dedicated to
analysis of distributed parameter circuits, particularly quasi-TEM inter-
connect analysis. Review of the interconnect macromodelling shows that
wavelets have potential for analysis of nonuniform transmission lines, but
proof of passivity has to be provided before this potential can be realised.
The chapter concludes with discussion of the problem of extracting trans-
mission line physical parameters, particularly capacitance matrix, for

interconnect simulations.

Chapter 5 summarizes the material presented in this thesis and outlines

possible directions for future research.

1.3 ORIGINAL CONTRIBUTION

The primary original contribution of this thesis is in the development of
wavelet technique for steady state analysis of nonlinear circuits. The prin-
cipal disadvantage of the traditional Harmonic Balance technique is in
the appearance of dense blocks in Jacobian matrix, which dominate O(N%)
computational complexity of the problem. Harmonic Balance formulation
quickly becomes too expensive to use for highly nonlinear and multitone
circuits. The wavelet method developed in this thesis provides O(N) sparse

Jacobian by construction and although it does not show particular
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advantages over traditional methods for single tone simulations and is
slower than traditional methods for mild to medium nonlinearities due to
primitive spectrum truncation technique, it shows significant advantage
for highly nonlinear and multitone circuits. Wavelet method can be fur-
ther accelerated by developing time- and/or frequency domain adaptive
schemes. In addition, it opens the whole new area of exploring steady

state methods in bases other than Fourier series.

The secondary contribution of this thesis is in the area of capacitance
extraction. Application of wavelets to the capacitance extraction has been
known before from the literature. The original contribution here is in the
exploitation of the idea that surface charge on the conductor can be com-
puted accurately without accurate computations of the charge distribu-
tion itself. This allows development of the hard thresholding concept and
it's successful application to extraction problems. Wavelet extraction
methods with hard thresholding have potential of successfully competing

with the best available techniques for extraction of physical parameters.




2. BACKGROUND: WAVELETS

2.1 LINEAR ANALYSIS

Linear analysis is the field of mathematics that is cornerstone to the
numerical problems arising in EDA industry. This section is intended to
provide a brief, accessible, yet rigorous background on the linear spaces,
vectors, projections and linear operators. Theory presented here will be
extensively used later in this chapter when we will proceed to the wavelet
analysis as well as in subsequent chapters dealing with applications of

wavelets to various computationally extensive EDA problems.

There is a vast amount of books covering linear analysis. Definitions and
discussions presented here are for the most part based on an excellent
text [1], which can be consulted for more detailed presentation of the

material.

2.1.1 LINEAR SPACE

The set S containing vectors a, b, c,... is a linear space if the following

rules for addition (2.1)-(2.4) and multiplication (2.5)-(2.8) apply:
(atb)+c =a+(b+c). (2.1)

There exists a zero vector 0 .S such that
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a+0=0+a =a. (2.2)

For every a 0§, there exists —a 0§ such that

a+(—a) = (-a)+a = 0. (2.3)

a+b =b+a. (2.4)

Multiplication rules (a and B are scalars):

a(Ba) = (ap)a (2.5)
la = a (2.6)
a(a+b) = aa+ab (2.7)
(a+B)a = aa+Pa (2.8)

Linear space S is said to have dimension n if it possesses a set of n inde-
pendent vectors and if every set of n+1 vectors is dependent. If for every
positive integer n we can find n independent vectors in S, then S has infi-

nite dimension.

Basis of linear space S is a set of independent vectors {¢,} , such that for

any vector x 0 S
x = %akq)k (2.9)

The representation (2.9) with respect to a given basis is unique.
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2.1.2 INNER PRODUCT

S is called an inner product space if for every ordered pair of vectors
(x, y) O S, there exist a unique complex scalar denoted by [k, y{Jthat satis-

fies all of the following conditions:

O, y0 = O, (2.10)

where overbar indicates complex conjugate.

Ok +y, z0= Ok, 20+ O, 20 (2.11)
Cox, yO=a Lk, O, forall a OC (2.12)
[k, x(0= 0 with equality if and only if x=0 (2.13)

Real inner products are also of significant practical interest. For them, the

first condition simplifies to:
[k, yO = Oy, x. (2.14)

On interval (a,) inner product is usually computed as a weighted inte-

gral:

B
gl = [w(Q)/(Q)g(Q)dl. (2.15)
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Throughout this work the weighting function w({) will be assumed identi-

cal to 1 unless explicitly noted otherwise.

2.1.3 ORTHOGONALITY

The concepts used throughout this work involve the notions of orthogo-

nality and orthonormality.
Two vectors x and y are orthogonal if their inner product is zero:
Ok, =0 (2.16)
Set of basis functions {¢,} is orthogonal if the following is true:
(b, ¢JD =90 >0 ifand only if i = j and zero otherwise. (2.17)

Whenever 8 in (2.17) is equal to 1, such basis is also called orthonormal.

2.1.4 CONVERGENCE IN A NORMED LINEAR SPACE

A linear space S is called a normed (equipped with a norm) linear space if,
for every vector xS, there is assigned a unique real number |x| OR

such that the following rules apply:
[x]| =0 with equality if and only if x = 0 (2.18)

lax| = |allx|] where a is an arbitrary scalar (2.19)
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ey + 6] = ]| + e (2.20)

There exist many different definitions of the norm, but by far the most

popular is the norm induced by the inner product:

lxll = &/ Tk, X0 (2.21)

One of the important consequences of introduction of the normed linear
spaces is that a norm provides a measure of the “closeness” of one vector
to another. One can note from rule (2.18) that |x—y| = 0 if and only if x
and y are the same vector. Therefore, closeness between x and y can be

mathematically indicated as ||x—y| <e.

This observation brings up a concept of convergence. Among many forms
of convergence, there are two that are fundamental for establishing con-
crete “boundaries” on the linear space. The type of boundary that is nec-
essary is the one that ensures that the limit on a vector sequence in a

linear space is also contained in that space.

- (o]
In a normed linear space S, a sequence of vectors { x;} |k _ converges to a
vector x [0S if, given an arbitrarily small numbere >0, there exist a num-
ber N such that |x-x,| <&¢ whenever k>N . Convergence of xi to X is usu-

ally denoted as x, - x or

lim x, = x (2.22)

k - o
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We can also note here that due to the continuity of the inner product,
order of application of the limit and the inner product to a sequence con-

verging is S is interchangeable:

lim [k, A0 = Olim x,, A (2.23)

k - o k - o

The notion of convergence introduced above is a strict one and it also

implies Cauchy convergence, which is defined as following.

In S, a sequence {x;} |: 1 converges in Cauchy sense if, given an arbi-
trarily small number € >0, there exist a number N such that |x, —x,| <€

whenever min(m,n) > N :

lim |x,-x,[ =0 (2.24)

mn -

Convergence in Cauchy sense is a weak form of convergence and in it’s
turn does not necessarily imply strict convergence in sense of (2.22). In
other words, it is possible for two vectors of the sequence to become arbi-
trarily close to each other without the sequence itself approaching a limit
in S. This observation leads to the introduction of complete spaces, in

which Cauchy convergence does imply strict convergence.

A normed linear space is said to be complete if every Cauchy sequence in

the space converges to a vector in that space.
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2.1.5 HILBERT SPACE

A linear space is called a Hilbert space if it is complete in the norm
induced by it's inner product. Therefore, in any Hilbert space, Cauchy

convergence implies convergence.

In numerical analysis we are often concerned with subsets of vectors in a
linear space. Such subsets are obtained by approximate solutions of the
differential and integral equations describing the problem, be it initial

value problem or boundary value one.

One such subset of vectors is called a linear manifold. If S is a linear
space and a, 3 are arbitrary scalars, then M is a linear manifold of S, pro-
vided that ax + 3y O M whenever x, y 0 M. It is easy to show that M is also
a linear space and inherits many of the properties of S. One can view a
linear manifold as a “subspace” in S, e.g. one spanned by a finite dimen-
sional subset of basis vectors in an otherwise infinitely dimensional
space. A linear manifold is closed if it contains the limits of all sequences
that can be constructed from it's members. Therefore, a closed linear

manifold in a Hilbert space is a Hilbert space on it's own.

Within the framework of Hilbert spaces, it is possible to construct a gen-
eral approach to approximation of vectors and functions. Let x be a vector

in Hilbert space H and let {u,;} |:_1 be an orthonormal set in H:
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m
X, = Z oy, - (2.25)
k=1

“Best approximation” { o} |Z’_1 of x on {u;} |Z’_1 is then given by
a, = O, w0 (2.26)

which also constitutes projection of x onto a closed linear manifold H,,, a
Hilbert space spanned by {u;} |Z’_ g As a consequence of this, best
approximation performed according to (2.26) also produces a residue vec-

tor e, = x—x, which is orthogonal to Xx,.

The above results for the approximation of a vector x 0 H by a vector
x,, 0 H, OH can be generalized. We will need a concept of manifold that is
orthogonal to a given manifold. If M is a linear manifold in H, then a vec-
tor e H is a member of set M~ if it is orthogonal to every vector in M.
The set M" is also a linear manifold since linear combinations of vectors
in M" are also orthogonal to vectors in M. In fact, M" is also closed. The

closed linear manifold M" is then called the orthogonal complement to M.

2.1.6 PROJECTION THEOREM

The concept of “best approximation” introduced above can now be formu-
lated rigorously using the notion of the orthogonally complementary

spaces. This formulation is also know as the Projection Theorem which is
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fundamental to the approximation theory and numerical methods for

solution of operator equations.

Let x be any vector in a Hilbert space H, and let M 0 H be a closed linear
manifold in H. Then, there is a unique vector y, M 0OH , closest to X in
the sense that ||x—yk|| <|x-y| for any vector y in M. Furthermore, the
necessary and sufficient condition that y, is the unique vector minimiz-
ing ||x—y,| is that the approximation residue defined as e = x -y, is con-

tained in the orthogonal complement M" of the projection space M.

2.2 LINEAR OPERATORS IN HILBERT SPACE

2.2.1 MATRIX FORMULATION

Let S be a linear space. An operator L is a mapping that assigns a vector

x O S another vector y[S :
Lx =y (2.27)

The operator L is linear if the mapping (2.27) is such that for any two vec-
tors x and y in the domain of L, their linear combination ax + By is also in

the domain of L and the following holds:

L(ax+By) = aLx+BLy (2.28)
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Equation (2.27) can be solved for x. First, we write a best approximation

for x in basis {u} |Z_ =

m

x = lim a .
lim 5 aj (2.29)
k=1
m m
Lu = L lim z o u, = lim Z o, Lu, (2.30)
(= =

take the inner product of both sides with another basis {v} |;"_ 1 :

m

Olim z a,Lu,vd= 0vO (2.31)
S =g
m
lim Z o, Lu,,vO= 0y v (2.32)
S =

| L vilfay] = (B (2.33)

Equation (2.33) is a matrix equation for unknown column vector [ak} and

can be solved using available techniques. Matrix A, defined as

[Akl} = [ELuk, qu , (2.34)

is a projection of operator L onto finite dimensional closed linear manifold
spanned by {u;} |Z:1 and {v} |;":1 . The process of approximating a lin-

ear operator with a matrix is also know as discretization of the operator.
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Bases {u;} and {v} can be the same or they can be different. Depending
on {u} and {v} , (2.34) can result in different well-known discretization
schemes, such as Method of Moments [2], Galerkin method [2], Finite Dif-

ferences [3] and Finite Elements [4].

For example, if {«;} and {v} are interpolating polynomials on an inter-
val and order of {«;} polynomial is 2 more than the order of {v} polyno-
mial, the discretization scheme becomes Finite Differences. For arbitrary
{ug} and {v} the method is usually referred to as Method of Moments,
and for {u;} = {v} as Galerkin method. Basis set {u;} is called expan-
sion functions while basis set {v} is usually referred to as weighting or

testing functions.

If {«,} are eigenvectors of L, the resulting matrix A is diagonal with eigen-

values of L on the main diagonal.

2.2.2 NEED FOR NEW BASES

Efficiency of all discretization techniques primarily depend on how “good’
or “bad” a basis is. The obvious optimal basis for discretization is the
eigenfunctions of operator L. However, this involves solution of the eigen-
value problem which is cost prohibitive for most practical cases. A “good”

basis should be:
» easy to handle, i.e. to generate and to compute inner products;

» provide sparse representation of the operator;
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» provide well conditioned representation of the operator or allow efficient

preconditioning.

One of the principal disadvantages for FEM/FD as well as for traditional
MoM/Galerkin schemes is the need to regenerate the bases {u;} and
{v} and recompute matrix A (2.34) whenever a problem does not con-
verge to desirable accuracy with m basis functions. Grid refinement tech-
nigues can be applied instead of regeneration in some cases, but a
systematic and generalized way of refinement must be established. Fou-
rier basis as well as different families of orthogonal polynomials provide
means for refinement without regenerating the basis, but they don’t have

local support, which in many cases leads to a dense matrix.

Whenever L, x and/or y in equation (2.27) have frequency content that is
localized in space/time, different degrees of resolutions in different
regions must be applied for accurate representation at low cost. Win-
dowed Fourier transform can provide necessary localization framework
for such scenario. However, the problem with the windowed Fourier
transform is that for typical real-life signals and functions, high frequency
components would have a short timespan and won’t be properly localized
with a certain window size, while the low-frequency components would
have a long timespan and won’t be captured by the same window at all. A
work on exploring a variable window width transform led to construction

of one of the first families of wavelets, modulated Gaussian or morlets [5].
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A generally “optimal” basis should retain advantages of the FD/FEM
(local support, sparse representation) with the orthogonality of resolution

levels inherent to Fourier series and orthogonal polynomials.

2.3 WAVELET CONCEPTS

2.3.1 FROM PULSE FUNCTIONS TO HAAR WAVELETS

Let us illustrate the idea of orthogonal refinement with an example of
approximating a function in basis of pulse functions (Fig. 2.1). Graph on
the left represents approximation in rather coarse basis. To improve the
approximation, we refine the basis such that each basis function has half
the support of the original basis (right graph). This reduces approxima-
tion error, however all the approximation coefficients (2.26) have to be

completely recalculated in the new refined basis.

Let’'s denote space spanned by the original basis {q)j,k} as v, and one
spanned by the refined basis {¢j+11k} as V. The gquestion that arises
here is that is it possible to construct a basis {lIJj, & which will comple-
ment {¢j, 4 in V1?2 In other words, is it possible to find a set of basis
functions that will refine the original approximation without the need to

recalculate already existing coefficients?

For such a simple basis it's indeed trivial to construct a complementary

basis (Fig. 2.2). It's easy to see that L|Jj‘k(x) complements q)jvk(x) to the
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original basis refinement basis f

|
FIGURE 2.1. Refinement in the basis of pulse functions.

refined basis ¢j+1’k(x). Expansion in new basis will retain all the previ-
ously calculated coefficients and only half has to be calculated from

scratch.

0, () W, () 001 (x)

FIGURE 2.2. Refinement through orthogonal complement.
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We should also mention here that lij’k(x) is not only complementary, but
also orthogonal to q)j,k(x). This is a very comfortable fact provided that

both bases are also orthogonal on their own.

Such basis functions are Haar functions, named after a mathematician
who first proposed such construction in 1911 ([5]). However, it was not
until 1980s when these functions were incorporated into rigorous mathe-
matical framework of multiresolution analysis. Basis functions ¢j,k(x)
that capture average value of the approximated function were given the
name of scaling functions, while lij‘k(x) that represent variation were

given the name wavelet functions or wavelets®.

Though Haar wavelets are not optimal for many applications, their sim-
plicity is useful for illustration of many wavelet concepts on a very intui-

tive level.

2.3.2 TRANSLATIONS AND DILATIONS.

At this point we have introduced the double indexation of wavelets and
scaling function. The index pair (j,k) reflects the fact that a wavelet basis
set (Fig. 2.3) is formed by translations and dilations of original mother
wavelet g, , or scaling function ¢, , (Fig. 2.4). The first index j refers to

the scaling level, while the second index k refers to the translated position

1. Literal translation of french ondelette.
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of this basis function on this particular scaling level, such that ¢j,k(x)

and qu,k(x) form orthonormal bases:
0, 4(x) = /270y o(2'x—k) (2.35)

W, () = J2 g (22 k) (2.36)

wavelet family: HaarO

FIGURE 2.3. Haar basis on [-1, 1].

At higher resolution levels, denoted by higher values of j, greater ranges of

k are required to span the same interval. In fact, with common dyadic
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construction of basis given by (2.35)-(2.36), the number of basis functions

on each resolution level doubles.
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FIGURE 2.4. Translations and dilations of the mother wavelet.

2.3.3 BIORTHOGONALITY.

Bases ¢j,k(x) in (2.25) and (2.26) are called synthesis basis and analysis
basis respectively. In wavelet analysis terms reconstruction and decom-
position are also in common use and have essentially the same meaning.

In general case, they need not be the samel. Analysis basis will then be

1. A well-know in engineering example of biorthogonality is Shannon basis, which con-
sists of delta functions for analysis and sinc functions for synthesis.
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denoted ¢j,k(X), with synthesis basis ¢j’k(x) as before. Wavelet bases
¢, ((x), B, 4(x) and ¢, 4(x), W, ,(x) must satisfy biorthogonality relations

[8]:

B, 10, ,0= 8, (2.37)
D, ¢, 0=0, (iz)) (2.38)
i, 6, ,0=0, (iz)) (2.39)

a0 B 0=8,58, (2.40)

¢j,k(x) is then called a dual function of ¢j,k(x) and vice versa. The same

applies also to ¢, ,(x) and P 4 (x).

2.3.4 REFINEMENT EQUATION.

An important concept of wavelet analysis is the existence of refinement
equation, which allows representation of basis functions (both scaling
functions and wavelets) at level k in terms of scaling functions at level

k+1.

As it can be easily seen from Fig. 2.5, refinement coefficients for the Haar
basis indeed exist and can be found by observation. In general case we

can write refinement equations for biorthogonal bases:
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P(x) o (x)

J _ | 000 = 30020 +30(2x-1)

¢ (2x) ¢(2x—1)

W) = 5620+ F50(x-1)

FIGURE 2.5. Refinement equation for Haar wavelets.

M
d(x) = z h;$(2x —m) (2.41)
m=-M
M
b(x) = > g0(2x-m) (2.42)
m=-M
M ~
d(x) = z h;®(2x —m) (2.43)
m=-M
M
b= Y &x-m) (2.44)
m=-M

Refinement coefficients h;, izj and g gj are not independent. They must

satisfy symmetry relations:
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i+17

g = (1) (2.45)

i+1

§i+1 = (_l) h_l‘ (2.46)

and, in the case of biorthogonal wavelets, biorthogonality relations also

hold:

%h,_zi/},_zj =5, (2.47)
%gl—Qiél—Zj =9, (2.48)
%hl—Zigl—Zj =0 (2.49)
%ill—ﬁg]_z]' =0 (2.50)

For orthogonal (as opposed to biorthogonal) wavelets, similar conditions

immediately follow from (2.41)-(2.50) by setting h = h and g=g.
Rather non-trivial proof of these formulas can be found in [5].

Equations (2.41)-(2.46) together form a system of equations for vectors 4
and 4. Each solution uniquely determines a family of wavelets containing
6, +(x), 0, ,(x) and ¢, 1(x), W, 4(x). Itis easy to see that the number of
possible solutions depends on the numbers M and M of nonzero coeffi-

cientsin 7 and 1. For M = M = 2, equations (2.41)-(2.46) are reduced to
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a system of 2 independent equations with 2 unknowns that produce a
unigue orthogonal solution /& = h = [l,—l}. For M = M = 3, there are no
known orthogonal solutions. For higher values of M, number of
unknowns exceeds the number of equations and additional restrictions
can be imposed to produce a solution that generates wavelets with desir-

able qualities. For example, for M = M = 4, there is one well known

orthogonal solution

h:;l:[”ﬁ,-”*ﬁﬁ—ﬁ,l‘ﬁ] (2.51)

4 4 4 4

generating second order Daubechies wavelet (Fig. 2.6) and a biorthogonal

solution

NI W
NI W
|

, ﬂ (2.52)

i3

that generates a quadratic spline wavelet (Fig. 2.7) for the reconstruction

N
Bl
I
Al—

basis. Several other solutions are possible if we loosen the constraint of

M = M = C with a more relaxed one of M +M = 2C. For example, with

M

3, M =5 and C = 4 as before, 2 more solutions are possible (their

scaling functions are represented in Figs. 2.8 and 2.9 correspondingly):
SRR S N
h = [5’1'5}’ h= [ 4'2'2'2 4} (2.53)

Lo242 ! } (2.54)

h=10,1,0], 7 = [_E’O’E’I’E’O’_E
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FIGURE 2.6. Scaling function generated by (2.51).
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FIGURE 2.7. Biorthogonal scaling functions generated by (2.52). Left:
reconstruction basis. Right: decomposition basis.

-80
0

For higher values of M several orthogonal solution are possible. For exam-

ple, for M=8 there exist a solution in the Daubechies family (Fig. 2.10)

that maximizes the number of vanishing moments for given support width

(more on this later) and a solution in the Symlet family (Fig. 2.11) that

produces a most “symmetrical” wavelet among all orthogonal solutions.
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FIGURE 2.8. Biorthogonal scaling functions generated by (2.53). Left:
reconstruction basis. Right: decomposition basis.
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FIGURE 2.9. Biorthogonal scaling functions generated by (2.54). Left:
reconstruction basis. Right: decomposition basis.

2.3.5 MULTIRESOLUTION ANALYSIS.

We proceed with the concept of multiresolution analysis [5] on O that

consists of successive approximation spaces Vj, sometimes also called

ladder of spaces:

VL0V 0wy B, o,

0.8

0.9

(2.55)
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FIGURE 2.10. Daubechies family wavelet and scaling function, M=8.
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FIGURE 2.11. Symlet family wavelet and scaling function, M=8.
TT1 +, _ 12
Ll v, =170) (2.56)
joz
NV, ={0 (2.57)
joz
-
/(QOV, - 2700V, (2.58)
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f(QOV, > f(C-n)0V, forall n0OZ (2.59)

[ OV, such thaty , ,(x) = ¢(x—n) constitute an orthonormal

basis for 1, (2.60)

Whenever the ladder of spaces V; satisfies these five properties (2.55)-

(2.60), there exist a function Y such that
ProjVij = Projij+ gz Of W, (2.61)
k

Collection {L|Jj,k(x) :2j/2L|J(2jx—k) , kOZ} automatically constitutes

an orthonormal basis in W, which satisfies following conditions:

Vi =v,0w,, (2.62)

i.e. Wj is an orthogonal complement of Vj in Vi1,
WJ.DWZ. if j#£i, (2.63)

i.e., all these subspaces are mutually orthogonal and by virtue of (2.56)
and (2.57) allow a decomposition of the space of square integrable func-

tions Lz(D):

o) = [] W, (2.64)
jo0z

and W ; spaces inherit the scaling property (2.58) from the Vi
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FQBW; - @7 0w,. (2.65)
Functions
W, () = 2729 -k) , kDOZ (2.66)

that span w; juzZ are called wavelet functions, and corresponding func-

tions that span V', j0Z:
¢, () =2"20@2x~k) , kOZ (2.67)

are called scaling functions.

There also exist other families of wavelets that are not orthogonal and/or
do not have scaling functions associated with them, but we will not con-

sider these families for the reasons explained later.
2.4 PROPERTIES OF WAVELETS

2.4.1 LOCAL SUPPORT

By limiting the number of nonzero refinement coefficients in (2.41)-(2.46),
we ensure that the wavelets and scaling functions generated by them
have local support. Local support means that (ﬁj’k(x), lIJj’k(x) and ¢j‘k(x),
lij’k(x) are all identical to zero outside of a closed interval. This is a very

important fact because wavelets not only generate a ladder of approxima-
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tion spaces like Fourier basis and orthogonal polynomials, but also each
basis function (be it scaling or wavelet function) is responsible for approx-
imation of a vector only on a small interval, like the truncated on interval

polynomials used in FEM.

Because support is directly linked to the number of nonzero refinement
coefficient, it is also responsible for the “degree of freedom” we have while
constructing wavelets. As the refinement vectors » and h get longer, more
solutions of the refinement equations (2.41)-(2.50) are possible and there-
fore more restrictions can be imposed on them to produce a wavelet fam-
ily with desirable properties. This means that support width can be
viewed as a resource we can spend to construct a proper wavelet. The
trade-off for a wavelet family with wider support is the decrease in local-

ization ability.

Orthogonal wavelets necessarily have identical # and h and therefore,
identical support and identical properties for both decomposition and

reconstruction bases.

2.4.2 REGULARITY AND VANISHING MOMENTS

One can mention from the above examples that wavelets can be rather
unsmooth functions. Haar wavelet is piece wise constant and therefore is
not differentiable everywhere. Daubechies wavelets (e.g. Fig. 2.6) do not

have a well defined derivative, but they can be characterized by a certain
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degree of regularity. Regularity here is understood as a measure of the
smoothness of a function. Regularity of a implies that the a -th derivative
of a wavelet belongs to LZ(D), i.e. is a square-integrable function. Regu-
larity directly corresponds to how fast frequency spectrum of the wavelet

vanishes towards higher frequencies.

Other important property of wavelets is the existence of vanishing
moments: wavelet , (x) is said to have L vanishing moments if the follow-

ing holds:
J‘lep)\(x)dx =0 for [ =0..L (2.68)

High number of vanishing moments also corresponds to how fast fre-

quency spectrum of the wavelet vanishes towards lower frequencies.

Scaling function may (e.g. for Coiflets) or may not (e.g. for Daubechies

wavelets) have higher order moments equal to zero.

Unfortunately, all of the above properties can not be achieved simulta-
neously. If we limit ourselves to local support wavelets, we can not get
infinite regularity - such wavelets should necessarily have at least almost
local support (e.g. exponential decay). For a given support width, one can
construct either a wavelet with highest nhumber of vanishing moments
(Daubechies wavelets), which is highly irregular and asymmetry is well
pronounced, or a wavelet with least asymmetry (symlet), which will have

significantly smaller number of vanishing moments.
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Support width directly translates into how well frequency spectrum of a
given wavelet is localized. The wider is the support, the better such wave-
let is localized in frequency domain (Fig. 2.12). This example clearly illus-
trates the property of time-frequency localization. Wavelets have zero
average and therefore have no frequency content at zero frequency. Wave-
lets with more coefficients also have more vanishing moments (N/2 van-
ishing moments for Daubechies family with N nonzero coefficients and
2N-1 support width). More vanishing moments translates to faster decay
of wavelet spectrum in low frequency range. One can also see that higher
order wavelets with wider support are fairly smooth and exhibit increas-
ingly oscillatory behaviour which translates to faster decay of the fre-

guency content towards the higher frequencies.

Orthogonal wavelets necessarily have identical »# and h and therefore,
identical support for both and identical properties for decomposition and
reconstruction bases. Sometimes it becomes advantageous to put empha-
sis on different properties for the decomposition and reconstruction wave-
lets. For example, more vanishing moments lead to more effective
approximation, while greater regularity of the reconstruction basis results
in smooth synthesis of the approximated function. Biorthogonal wavelets
can provide exactly that additional degree of freedom. Earlier examples of
spline interpolating wavelets (Figs. 2.7-2.9) illustrate this observation.

Within the same “sum of support” for decomposition and reconstruction
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scaling functions, we can split this resource in different ways giving more

regularity to the reconstruction basis at the expense of decomposition.

2.4.3 FAST WAVELET TRANSFORM

In order for an orthogonal transform to be numerically efficient, there
should exist a fast algorithm of computing the expansion coefficients
(2.26). In general, {x;} |kN_1 O {o} |kN_1 transform is equivalent to multi-

plication of vector [x;] by an N x N transform matrix T:
o] = [T} ] Ux] (2.69)

Computing (2.69) in general case requires O(Nz) operations. If matrix T
has a special structure, faster algorithms exist, such as O(NlogN) FFT

algorithm for Fourier Transform.

We start construction of the Fast Wavelet Transform (FWT) with an exam-

ple of computing (2.69) in Haar basis with one level of scaling functions

and one level of wavelets (¢ (), Y({) in Fig. 2.5 and their dilations along x

axis). Computing approximation coefficients corresponding to the scaling

functions ¢,({) = ¢({ —i) requires computing of a moving average of vec-

tor x over two samples. This is equivalent to convolving x with a Finite
11

Impulse Response (FIR) digital filter with filter taps equal to & = [5’ ﬂ [7].

Similarly, wavelet coefficients can be computed by convolving x with the

FIR g = [—% ﬂ (Fig. 2.13).
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a[k] a[k/2]
—>  H(2)

X[k]

d[k] d[k/2]

—> G

FIGURE 2.13. Computing one level of FWT with FIR filter bank.

For each k samples of the input vector x, each of the LPF H(z) and HPF
G(z) will compute k samples of the approximation vector a[k] and k sam-
ples of the detail vector d[K] respectively. This is twice as much informa-
tion as compared to what we feed to the input. This redundancy occurs
because the filters are computing twice as many approximation coeffi-
cients as required by (2.26). In fact, because dilations of Haar wavelets
have zero overlap (Fig. 2.3), we only need every other entry of a[k] and
d[k]. This also makes sense from the signal processing point of view: the
initial spectrum of x[k] is being split into two complementary parts by the
pair of filters, such that each part has half the original bandwidth. This
means that the sampling frequency of alk] and d[k] can be lowered 2
times by a process called downsampling without any loss of information.
The downsampling is performed by the decimators that are merely dis-

carding every other sample appearing at the input. At the output the sys-
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tem produces two vectors half the length of the original sequence. These

two vectors combined form together the {a,} |j€v_ 1 in (2.69).

One can notice that the filter taps for LPF H(z) and HPF G(z) in above
example are the same as the refinement coefficients (2.41)-(2.44) for Haar
wavelets. This is not just a coincidence and holds not only for Haar wave-
lets, but for any wavelet family satisfying biorthogonality conditions
(2.41)-(2.46). These conditions have a simple equivalent in digital domain
called perfect reconstruction conditions [6]. Consider system in Fig. 2.13

complemented by a similar setup performing inverse transform (Fig.

B OSOIE

x[k] yIKl

OZOK

FIGURE 2.14. Perfect reconstruction filter bank.

2.14).

The inverse transform filter bank consists of two upsamplers introducing

zero samples into the sequence and two reconstruction FIR filters. In
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order for the output sequence y[k] to be identical to the input sequence

X[K] with only possible delay, the filter banks must satisfy two conditions:
No distortion condition: H(z)H(z) + G(z)G(z) =27 (2.70)

Alias cancellation condition: H(z)H (-z) + G(z)f}(—z) =0 (2.712)

One can show [6] that filters banks with filter coefficients satisfying
(2.41)-(2.46) also satisfy these two conditions written in z domain. Such

filters are called Quadrature Mirror Filters (QMF).

For numerical methods, it is also convenient to be able to explicitly write
transform matrix T for (2.69). If we define filter coefficients for an arbi-
trary orthogonal wavelet family as & = [hyh, h,,....h,,_] and

g =808 8 18y -], then one can write [9]:

a; hg hy hy .y 0 0 0 0 X1
d g 81 & - Bm-1 X2
k d, & & & - &um- X4
a3 0 0 0 0 hO hl h2 hM—l x5
d; &o &1 ) R V| X6
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T is a sparse matrix with block diagonal structure. Each subsequent
block has two rows representing m and is shifted two columns to the
g
right due to the downsampling. It is clear that the cost of computing

(2.72) is O(N). Due to orthogonality, the inverse transform matrix is

obtained by transposing T:

-1 =77 (2.73)

ho  hy o Mt oo 0 0 o
éo g1 éz é]f/]—l
~ ilo ill ilz 711(4—1
7= o o0 ° N N N 0 0 (2.74)
& & & Eir-1
0 0 0 0 }:10 }:ll }:12 ];l]f/[—l
8o 81 Ig) gir-1

and the backward transform matrix is given by
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hy g0 0
hy g 0
h, g5 ho g0
...... h, g
T=| hyo1 8w h, g,
o .
0 Pyr—1 &m—1
0 0
0 0

(2.75)

To complete wavelet decomposition by incorporating multilevel expan-

sion, we construct a filter bank that doesn’t stop after a couple of filters,

but follows the structure of a wavelet decomposition tree. In such a tree,

decomposition is performed successively by identical blocks shown in Fig.

2.13 each acting upon the alk] sequence of the previous stage (Fig. 2.15).

H(z)

H(z)

@

kel

G(z)

G(z)

@ o

Tom

H(Z) @{

THD- <

X
{ G@) _@_ ds

FIGURE 2.15. Wavelet decomposition tree.
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Let length of the input sequence be equal to N. The first stage produces
two vectors az and dg each N/2 long. Total computational cost of this
stage is 2NM where M is length of the decomposition filters (for orthogo-
nal wavelets just substitute M for jf/l). Vector ag is further processed in
the second stage at the cost of NM (half the original because aj is half the
length of x). Similarly, cost of the third and fourth stages is NM/2 and
NM/4 respectively. Total computational cost of computing the whole
decomposition thus becomes

C = 2NM+NM+%~4+]%~4 = O(N) (2.76)
This simple calculation has important consequences for the computa-
tional cost of wavelet-based algorithms: cost of the fundamental operation
of computing a FWT of an arbitrary vector is only O(N), versus O(NIlogN)
for the FFT. Because of that, computational cost of wavelet algorithms is

bounded from below by only O(N).




3. STEADY STATE ANALYSIS OF

NONLINEAR CIRCUITS

3.1 PROBLEM BACKGROUND

Steady state analysis of nonlinear circuits represents one of the most
computationally challenging problems in EDA. Steady state analysis
implies that response of the circuit has to be found at times when all the
transients have sufficiently died out [16]. This immediately rules out time
marching schemes, especially for high bandwidth circuits, unless a good
solution for initial conditions can easily be obtained (shooting methods,
[17]). Direct frequency-domain methods are not applicable to the nonlin-

ear circuits either for obvious reasons.

Existing methods for steady state analysis of nonlinear circuits combine
both frequency domain and time domain analysis and are generally
known as the Harmonic Balance. The essence of this technique is to
replace the original Initial Value Problem with a Boundary Value Problem
with periodic boundary conditions and to solve the BVP in an appropriate

basis that ensures periodicity of the solution.

Harmonic Balance-like methods rely on fast and stable ways of solving

nonlinear algebraic equations as well as reasonably fast numerical tech-

43
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niques for going back and forth between time and frequency domain. The
speed and accuracy of nonlinear methods primarily depend upon how

fast one can factorize the Jacobian matrix for the nonlinear equation.

In this section, we present a newly developed numerical method for
steady state analysis of nonlinear circuits. The method is somewhat simi-
lar in formulation to the traditional Harmonic Balance technique, but
uses wavelets instead of Fourier basis. The new bases allow to reduce
density of the Jacobian from a matrix with essentially dense blocks to
O(N) bandlimited matrix. The potential of this method leads to significant
improvement in computational cost and memory requirements as com-

pared to the traditional Harmonic Balance methods.

3.1.1 MATRIX FORMULATION IN GENERAL FORM

Consider a lumped component nonlinear circuit that is described by non-
linear Ordinary Differential Equations (ODESs) in time domain. Most often

these equations are written in the MNA formulation® [18]:

Cx+Gx+f(x)+u =0 (3.1)

Where C and G are N x N, matrices, x is a column vector of unknown cir-

cuit variables and u is a vector of independent sources.

1. State space formulation follows by assuming C to be identity matrix.
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For steady state analysis we must either assume that the circuit is under
periodic excitation, or that the circuit is autonomous and generates peri-
odic output. In both cases solution vector x is periodic with fundamental

frequency corresponding to period T1:
x(t+71) = x(¢) (3.2)

Equation (3.1) with boundary conditions (3.2) can be solved by expanding
nonlinear ODEs (3.1) into a nonlinear algebraic equation for the expan-
sion coefficients of x according to (2.29) and (2.33). In order for the solu-
tion to satisfy boundary conditions (3.2), expansion basis must satisfy
these boundary conditions as well. In other words, expansion basis must
be periodic. Let us assume that [x|] is a discrete vector containing values
of x sampled in time domain at time points [t;] and that we have a certain
periodic basis {v} that has a pair of forward 7" and inverse T discrete

transforms associated with it:
X =T[x], [x] =TX (3.3)
The nonlinear term can be represented in the following form:
F(X) = Tf(TX) (3.4)

Equation (3.1) then can be written in the transform domain as a nonlin-

ear matrix equation:
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CDX+GX+F(X)+U =0 (3.5)

Where C, D and G are N,N_x N,N_ matrices. C and G are obtained from
C and G respectively by taking their tensor product with a N, x N, identity

matrix.

We denote left side of (3.5) as ®(X) and write it as

D(X) = (CD+G)X+F(X)+U =0 (3.6)

Matrix D in (3.5)-(3.6) is projection of the derivative operator % onto M,

(2.34):
[D,] = D(%vi, v (3.7)

Solution of (3.6) is usually performed using Newton iterations. Assuming
x9 as the initial guess for X, the linear matrix equation to be solved at

each step becomes

JxXNYx D Zxy = _ox®) (3.8)

where X' is the solution of i-th iteration, ®(X) is defined by (3.6) and
J(X) is the Jacobian of ®(X):
ch

9 .
J(X) = [J,(X)] = [a_)(,} ki1=1..,(NN,) (3.9)
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Substituting (3.6) into (3.9) and applying chain rule, we obtain the follow-

ing expression for computing the Jacobian [19]:

J(X) = CD+G+ T[af: j (3.10)
Jacobian is computed as a sum of three matrix components: CD, G and

{aiﬂT Sparsity of the Jacobian becomes equal to the sparsity of the
most dense of these 3 components. Matrices C and G result from the
MNA formulation and typically have rather sparse structure. Matrix of
derivatives D will have sparse structure only if chosen basis allows sparse
representation of the derivative operator, i.e. most of the elements in (3.7)
vanish. This naturally happens if {v} have local support (local support

for basis means local support for it's derivatives and therefore D becomes

a bandlimited matrix).

Sparsity of the third component in (3.10) depends primarily on the spar-
0f

sity of the forward and inverse transform matrices T and T as {W} for
I

time-invariant systems is just a block matrix consisting of diagonal

blocks.

For simplicity, we will first consider a scalar case of (3.1) were both ¢ and

A

G matrices in (3.6) can safely be assumed as being diagonal.
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3.1.2 FOURIER BASIS: HARMONIC BALANCE FORMULATION

For many years now, Fourier basis has been the natural choice for solving
the steady-state analysis problem. Fourier basis for solution of (3.1) is
usually constructed on an interval that ensures periodicity of the solu-
tion, includes 2N¢+1 basis functions that have the base frequencies that

are multiples of the fundamental frequency in the circuit [16]:
{v} = {1, coswr, sinwt, cos2wt, sin2wt, ... ,costoot,sianwt} (3.11)

Because complex exponents are natural eigenfunctions of the derivative
operator, derivative matrix D in this basis becomes a diagonal matrix in

real Schur form with base frequencies on the main diagonal:

D=w (3.12)

The transform matrix T has dimensions of N, x (2Nf +1) with N; being the
number of time points and N;f being the number of frequencies. This

matrix has the following structure:
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_1 cos (wt,) sin(wt,) ... cos(NfootO) sin(NfootO) |
T = 1 cos(wt,) sin(wt;) ... cos(Nfootl) sin(Nfootl) (3.13)
1 cos(ootNt_l) sin(ootNt_l) cos(NfootNt_l) sin(NfootNr_l)
If
N, = 2N, +1 (3.14)

then T is a square matrix which is nonsingular with a proper choice of
time sampling points. If more restrictions are imposed on the time sam-

pling points!, T can also be made orthogonal:

T=T =T (3.15)

This matrix clearly is dense which would suggest O(NZ) operations for
computing Fourier coefficients in (3.3). This cost can be reduced to
O(NlogN) by applying Fast Fourier Transform (FFT) algorithm for comput-
ing the T and T°1 operators. However, Jacobian in (3.10) invariably
becomes a dense matrix which brings cost of solving (3.8) up to O(NS) at
each iteration. In order to reduce the cost of solving (3.10), one must
choose a different basis that provides sparse representation for both D

and T matrices.

1. Lengthy discussions of different algorithms for the selection of time sampling grid can
be found, for example, in [16] and [17] and are really beyond the scope of this thesis.
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3.2 WAVELET FORMULATION

Let us consider expansion of a scalar form of (3.1) in wavelet basis in a

similar way as traditional Fourier expansion described in Section 3.1.2.

3.2.1 BOUNDARY CONDITIONS

Let expansion basis {v} be equal to one layer of scaling functions and

one layer of wavelets at level J such that 2/ = N,:

{v} |2N‘f = {L|J,~,J, ¢,‘,J} |ZN:/;1 (3.16)

i=1

Further, let us assume for simplicity that basis (3.16) is defined on an
interval (O, 1) and equation (3.1) is scaled accordingly such that period of
the fundamental frequency in the circuit is also equal to 1. To satisfy the
boundary condition of x(0) = x(1) we must construct the wavelets in
such a way that truncated on an interval basis becomes periodic. Such
construction can be easily performed when truncated part of the wavelet
(or scaling function for that matter) is not discarded, but appears on the

other boundary of the interval (Fig. 3.1).

Periodic basis constructed in such a way naturally enforces periodicity of
the solution while retaining all of the properties of wavelets described in

Section 2.4.
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FIGURE 3.1. Periodic wavelet basis on an interval.
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3.2.2 TRANSFORM MATRIX

Periodic wavelet basis on an interval (Fig. 3.1) gives rise to a bandlimited
transform matrix T that can be obtained from a non-periodic matrix (2.75)
by introduction of the “truncated” QMF coefficients into upper right (and,

if necessarily, lower left) corners:

hy g 0 0 h, g,
h, g, 0 o ..
hy &, hy o 0 Ryr—2 &v-2
...... hy g, 0 Pa—y 8m—a
Py—1 8y -1 hy & ho 8o 0
o .. hy g 0
= 0 Pyr—1 8n—1 hy g, 0
0 o 0
0 0 Ppe—1 &y-i 0
0 O 0 0
0 0 0 0
0 0 0 hy g
0 0 0 h, g,

(3.17)
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Lower left corner coefficients will appear if the QMF taps are aligned
around the center of the h vector such that hy always appears on the

main diagonal [8].

For orthogonal wavelets, inverse transform matrix is obtained from (3.17)
via (3.15). For biorthogonal wavelets, T is constructed by augmenting

(2.74) in a way similar to described above.

An example of the sparsity pattern for the 64 x 64 periodized transform
matrix constructed with orthogonal Daubechies wavelets with 8 filter
coefficients can be observed in Fig. 3.2. Filter coefficients are aligned in

the following way: h = [h_y, h_3,h_y, h_;, by, by, hy ,hs) .

This figure clearly illustrates that for local support wavelets generated by
FIR filters, transform matrix remains bandlimited (to a permutation) even
in periodic case. With each column containing M nonzero entries, total
number of nonzero elements in transform matrix is N,, = 2MN , (see
also page 42) or O(N). This is already an improvement over traditional

Fourier basis which generates a dense transform matrix.

Furthermore, because of the sparsity of the transform matrix and it's

of ]~
band structure, T{%"}T component of (3.10) is also a sparse bandlim-
I

ited matrix with O(N) nonzero entries (Fig. 3.3).

We will proceed with derivation of the D matrix in wavelet basis to deter-

mine the overall sparsity pattern of Jacobian.
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FIGURE 3.2. Sparsity pattern for the periodized transform matrix.

3.2.3 CONNECTION COEFFICIENTS

Derivative matrix D (3.7) contains 4 types of coefficients produced by dis-

cretization of derivative operator in wavelet basis (3.16) [20]:

/
a = WHE-x0

t

w%@j (3.18)

SN




Chapter 3: Steady state analysis of nonlinear circuits 55

40t '

%*igk

0 10 20 30 40 50 60
nz = 384

FIGURE 3.3. Sparsity pattern for the T(af/ax)f component of Jacobian
expanded in a basis of periodic orthogonal Daubechies wavelets of order 2.

B, = UJJE{—NLE,%PQ (3.19)
y, = BE -0 940 (3.20)
! [ NP or '

= up%—]%g,%p%%j (3.21)

where/ =0,...,N,—1.

t
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These coefficients obtained by expansion of the derivative operator in a

wavelet basis are often called connection coefficients.

By substituting (3.18)-(3.21) into the refinement equations (2.41)-(2.44)

one can show ([8],[20]) that

a; = 2%%§kgk'r2i+k—k' (3.22)

o
|

Yi

Therefore, representation of derivative operator in wavelet basis is com-
pletely determined by connection coefficients (3.21) obtained from scaling
functions only, or in other words, projection the derivative operator on

subspace V', is completely determined by projection on V.

For compactly supported (bi)orthogonal wavelets, {r,} is an anti symmet-

ric vector with following properties:

rpz20onlyfor —-M+2<m<M-2 (3.25)
rg = 0 (3.26)
P = T (3.27)
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(Z)mrm = -1 (3.28)
m
and, most important:
1M/2
"m = 2|:r2m+§ > ok 1(ram g+ +r2m+2k—1):| (3.29)
k=1

where a; are autocorrelation coefficients of the low pass QMFs:
a;=2 S hwhy i =1 M1 (3.30)

which can be computed with high precision using the following relation-
ships for a wavelet with L vanishing moments [20]:
I-1
-1) ¢,

S ) Y7 1167 ) R (3:31)

where

_ g @L-1)
C, SRS (3.32)

Only odd autocorrelation coefficients have nonzero values. Even coeffi-

cients are all equal to zero.

We have to note here that not only a; are rational numbers by construc-

tion, but they only depend on the number of vanishing moments for a
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particular element and not on the QMF coefficients themselves. There-
fore, they can be the same for different wavelets with the same number of

vanishing moment.

Linear algebraic system formed by (3.25)-(3.29) is ill conditioned and it's
numerical solution is unstable. Fortunately, since the coefficient of this
system are rational numbers, it can be solved symbolically. Consequently,
basic connection coefficients r,, are also rational numbers by construc-

tion and can be computed with any required degree of accuracy.

Connection coefficients for L=1...8 computed according to (3.25)-(3.32)
are given in Tables 3.1 and 3.2. It is interesting to observe that for L=1
(Haar wavelets) connection coefficients are equivalent to a well known
finite difference discretization scheme. Higher order discretization

schemes correspond to wavelets with more vanishing moment.

TABLE 3.1. Connection coefficients r, for orthogonal wavelets
with L=1...5 vanishing moments.

m L=1 L=2 L=3 L=4 L=5
0 0 0 0 0 0
1 -1/2 -2/3 -272/365  -39296/49553 -957310976/1159104017
2 1/12 53/365 76113/396424 265226398/1159104017
3 -16/1095 -1664/49553 -735232/13780629
4 -1/2920 2645/1189272 17297069/2318208034
5 128/743295 -1386496/5795520085
6 -1/1189272 -563818/10431936153
7 -2048/8113728119
8 -5/18545664272

Matlab code for computing r, can be found in Appendix A..
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TABLE 3.2. Connection coefficients r, for orthogonal wavelets
with L=6...8 vanishing moments.

m L=6 L=7 L=8
0 0 0 0
1 -3986930636128256/  -34141691312970913517142016/ -15307411742024122608047464906752/

4689752620280145 39300063853302507072666225 17326934462787065887255134938813

2 4850197389074509/ 3706848761045042521568797/ 84072878532195990258950029270329/
18759010481120580 13100021284434169024222075 277230951404593054196082159021008

3 -1019185340268544/ -1181478687077054472781824/ -5528889721339826844157784096768/
14069257860840435 13100021284434169024222075 51980803388361197661765404816439

4 136429697045009/ 14265867224679607007907577/ 8674597455129477747923023172169/
9379505240560290 628801021652840113162659600 277230951404593054196082159021008

5 -7449960660992/ -152541415888643207462912/ -602836894589837888264488353792/
4689752620280145 39300063853302507072666225 86634672313935329436275674694065

6 483632604097/ 1767685682356115678983/ 857916307369972797746047650035/
112554062886723480 5240008513773667609688830 831692854213779162588246477063024

7 78962327552/ 233086814008971624448/ -1328578550813659870682677248/
6565653668392203 55020089394623509901732715 17326934462787065887255134938813

8 31567002859/ -345875758226176733651/ -67976810578396425327419253/
75036041924482320 209600340550946704387553200 277230951404593054196082159021008

9 -2719744/ -25786104557650313216/ -6228044283147844191256576/
937950524056029 117900191559907521217998675 155942410165083592985296214449317

10 1743/ 32878864308626027/ 99913317392947272157417209/
2501201397482744 78600127706605014145332450 1386154757022965270980410795105040

11 -5202857403613184/ 184824736448048598614016/
432300702386327577799328475 190596279090657724759806484326943

12 -138931281377/ 603160866987014936359/
209600340550946704387553200 831692854213779162588246477063024

13 -2793278738075222016/
225250148016231856534316754204569

14 43953990152589/

277230951404593054196082159021008

3.2.4 DERIVATIVE MATRIX

Having obtained connection coefficients for the expansion of derivative
operator in basis of scaling functions (3.21), we can now construct deriva-

tive matrix D for (3.7).

We start with constructing matrix R which is projection of the derivative
operator onto subspace spanned by scaling functions. Because scaling

functions, as well as wavelets, have local support, R is a bandlimited
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Toeplitz matrix with it's diagonals filled by r,, [8]. To extend this construc-
tion for periodized wavelets, we need to populate the upper left and lower

right corners of the matrix as well [21].

0 T T T T T T
o000 o000
) o000 L )
[ 3} o000 [ 3}
o0 0 o000 ° ry
S5-re e e @ o000
o000 o0ooo0 r
oo 00 oo 00 Iy
o000 o000 ry
o000 o000
10 oo 00 o000 E
o000 o000
o000 o000
o000 o000
o000 o000
15+ o000 o000 E
o000 o000
o000 o000
o000 o000
o000 o000
20+ oo 00 o0 00 E
o000 o000
o000 o000
o000 o000
o000 o000
25F o000 o000 E
o000 o000
o000 o000
o000 o000
) o000 o0 0
30 e @ o000 [ 3}
L ) oooo‘\ ry
o000 o000
1 1 1 1 1 1 1’3

0 5 10 15 20 25 30 r
nz = 256

FIGURE 3.4. Derivative matrix R for periodized wavelets.

Fig. 3.4 illustrates structure for the derivative matrix R constructed with
periodized Daubechies wavelets of third order (6 filter coefficients). From
here, matrix D can be easily obtained using (3.22)-(3.24). These equations

describe convolution of the derivative filter with QMFs, which is equiva-
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lent to taking a 2-dimensional wavelet transform. In matrix form, we can

write it as
D = TRT (3.33)

where T and T are forward and inverse transform matrices. Sparsity
structure of the matrix D will depend on the sparsity structure of trans-
form matrices, which in it's turn depend on the ordering of basis func-
tions. The traditional way (first introduced in [20]) is to place scaling

functions first and then wavelets:

2N, _

{v} |i:1 = {90, ...,¢Nf_1“,;llJ0,J, ey L|JN_/.—1,J} (3.34)

This will generate matrix D that has four bandlimited quadrants popu-
lated by a, B, y and r as defined in (3.18)-(3.21) (Fig. 3.5). This is conve-
nient for generating representation of the derivative operator in so called

non-standard form [8], however such matrix has rather high bandwidth.

We can reduce the bandwidth of matrix D by reordering the basis in such

a way, that each scaling function is followed by the overlapping wavelet:

N _

[ = {000 Wo, by g p W, 1, (3.35)

Transform matrices defined by (3.17) in fact correspond to such bases.

Because both T and T in this case are bandlimited matrices, as well as




Chapter 3: Steady state analysis of nonlinear circuits 62

v

FIGURE 3.5. Structure of matrix D obtained in wavelet basis ordered according
to (3.34).

R, resulting matrix D is also a bandlimited matrix with O(N) nonzero

entries (Fig. 3.6).

Refer back to the Jacobian in equation (3.10). We have established that
wavelet expansion leads to construction of sparse bandlimited matrices
for all components of the Jacobian. Even though derivative matrix in

wavelet basis is not diagonal (as in case of Fourier basis), it has only O(N)
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FIGURE 3.6. Sparsity pattern for the 64x64 derivative matrix D constructed in
basis of order 3 periodized Daubechies wavelets.

nonzero entries. Together with sparse, O(N) transform matrix, this results

in sparse Jacobian in equation (3.8).

3.3 ANALYSIS OF COMPUTATIONAL COMPLEXITY

We use two computational cost metrics: number of nonzero elements in

the Jacobian matrix and net CPU time required for one LU decomposition




Chapter 3: Steady state analysis of nonlinear circuits 64

and Forward/Backward substitution of the Jacobian. The former is inde-
pendent of all the platform and implementation issues, is a dominating
factor for both memory storage and CPU requirements and provides a
good measure of computational resources required to perform the simula-
tion. The latter is highly dependent on the software and hardware imple-
mentation of the simulator, but given pretty much state of the art in both,
dominates the CPU cost of a Newton'’s iteration and provides a real world
estimate of the CPU time required for the solution. In this section we will
derive analytical estimates for the first metric, while reliable data for the
second metric can be obtained only experimentally and will be presented

in section 3.4.

3.3.1 HARMONIC BALANCE FORMULATION

Let us consider equation (3.1) in scalar form. Provided square Fourier
transform is used, 7 and 7 matrices in (3.3) are square and dense. Jaco-
bian (3.10) also becomes a dense matrix because of the 7(df/dx)T com-
ponent. If we denote order of expansion as N,, Jacobian is a dense N, x N,

matrix that has O(Nf) nonzero elements.

Let is generalize this to a vector case. Matrices in (3.6) and (3.10) obtain a
block structure with each N,xN, nonzero block corresponding to one
nonzero entry in circuit equation matrices (3.1). These nonzero blocks
have O(N,) elements for every nonzero entry in matrices C and G and

O(Nf) elements for every nonzero entry in [df,/0x;] . Density of Jacobian
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(3.10) in this case is dominated by these dense blocks corresponding to
nonlinear elements in the circuit. Only the size of these blocks changes
with the order of expansion. Overall density of the Jacobian in this case is

Ny, OO(K ENf) , Wherek is constant for a given circuit and therefore
Ny, OO(N?) (3.36)

like in scalar case. In it's turn, order of expansion is linearly proportional

to the number of frequencies in truncated set:
N, =2N,+1 (3.37)

with 1 accounting for the DC component.

Number of frequencies in truncated set is a critical point for computa-

tional cost analysis.

3.3.2 SPECTRUM TRUNCATION ISSUES

Let us denote the highest order of intermodulation products retained in
simulation as Ny. Equation (3.11) describes frequency set useful only for
analysis of circuits excited by a single tone. For multitone analysis, the
set Q should include harmonics of all the tones as well as all relevant

intermodulation products:

0
k, 020 (3.38)
O

0
Q—[p)|oo

ka

s=1
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This set is infinite. In order to make the problem computationally solv-
able, we must truncate this set to one that provides an approximate solu-
tion. Truncation schemes are the principal source of errors in steady

state analysis, primarily due to the aliasing of truncated components [17].

The simplest truncation scheme (we will refer to it as trivial truncation)
assumes that all w, in (3.38) are commensurate with a single fundamen-
tal frequency Aw. Trivial truncation then generates an equidistant fre-
guency grid spanning all the frequencies from O to Ny-th harmonic of the
highest frequency in w,. For example, if tone frequencies are equal to 900
and 910 MHz and Ny = 10, the set will span frequencies from O to 9100

MHz with step Aw = 10 MHz. If we denote density of the grid as

. Aw
AG = —=42 3.39
@ max{ w} ( )
then trivial truncation produces a grid that has
0 E{ED A
Ny HOten (3.40)

frequency components. Together with (3.36) and (3.37) this results in the
following computational complexity estimation for HB formulation with

trivial truncation:

Ny, Do% (3.41)




Chapter 3: Steady state analysis of nonlinear circuits 67

This effectively renders trivial truncation to be unsuitable for all but the

simplest and smallest cases.

Another truncation strategy is aimed to retain in Q, only the frequencies
which carry intermodulation components with orders up to Ny. This

strategy gives rise to box

O
Q, [p)|oo ka k,OZ; |k|<NyO (3.42)
U
s=1
and diamond
0 5 0
Qy [p)|w st wJ; k,0Z; ZkSSNHD (3.43)
- O
s=1 s=1

truncation schemes.

In general case, for multitone analysis with S tones and box or diamond
truncation, number of frequencies in truncated set is proportional to the

volume of a cube in S-dimensional space ([16], p.245):
s
N UOO(Ny) (3.44)

However, for a practically interesting case of periodic analysis when all w,
are commensurate with a single fundamental frequency Aw, Nf grows
slower than (3.44) because with increase in Ny frequencies of the new IM

products often coincide with already existing in the set. Particularly, if
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tone frequencies in w, are evenly spaced (e.g. 900, 910, 920, ... MHz), set

size grows only as
2
N, OO0(S OVy) (3.45)

Combining (3.36), (3.37) and (3.45), we conclude that for multitone Har-
monic Balance computational cost in terms of the number of nonzero ele-

ments in Jacobian is equal to
Ny, OO(NT,) (3.46)

Computational cost in terms of CPU time will actually be slightly higher

and also depend on the size and density of the circuit equation (3.1).

3.3.3 WAVELET FORMULATION

Similarly to Harmonic Balance expansion, estimations given in Section
3.2 for wavelet expansion can be generalized to include circuit equations
(3.1), where each nonzero element after expansion becomes an N,x N,
sparse block, each having O(N,) nonzero entries (see Fig. 3.3 and Fig.

3.6). Total number of nonzero entries in wavelet Jacobian becomes
Ny, OO(N,) (3.47)
with

N, = 2N, (3.48)
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because of the sampling theorem.

With wavelets we use trivial truncation that produces an equidistant uni-
form frequency grid spanning harmonics and IM components up to
required Ny. This, however, is quite a beneficial trade-off as this scheme

produces frequency grid with
_ Va0
N, = O (3.49)

components, where A® is the relative density if the frequency grid (e.g. for
base frequencies 99 and 100 MHz A& = 1%). Combining (3.47)-(3.49) we

conclude that computational cost of wavelet expansion is
Ny, = O(Ny) (3.50)

and despite the primitive truncation schemes, with increase in Ny and S
wavelet methods very quickly gain significant advantages in computa-

tional cost.

Comparison of relative computational complexity is shown in Fig. 3.7.
This plot was produced for a scalar case with multitone excitation and
closely spaced commensurate tone frequencies (e.g. 1000, 990, 980, 970

MHz, .... for A® = 1%).

This plot produces some interesting observations. First, computational

complexity of Harmonic Balance with diamond truncation does not
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Comparison of computational complexity
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FIGURE 3.7. Comparison of computational complexity in terms of the number
of nonzero elements in the Jacobian.

depend on the density of frequency grid. This is quite understandable in
view of the fact that Fourier series is a frequency localized basis. Good fre-
quency localization is what makes possible sophisticated truncation
schemes in frequency domain. However, this also causes computational
cost to be N, DO(NZ) and also to depend on the number of tones. Sec-
ond, computational cost of wavelet formulation with trivial truncation
perfectly follows (3.49) and despite the fact that it depends on the density
of frequency grid, it does not depend on the number of tones as long as

the newly introduced tones fall into the same grid produced by trivial
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truncation. This is also quite understandable if we consider the fact that
wavelet transform used in the formulation can be represented by a single
level filter bank represented in Fig. 2.14. Note, that for (bi)orthogonal
wavelets power frequency response of the filter bank satisfies the no dis-
tortion condition (2.70), which essentially means that the transform cov-
ers all frequency range split into two bands (Fig. 3.8). By comparison, a
filter bank associated with Fourier transform has frequency response of a
collection of narrowband filters. With trivial truncation, combined fre-
guency response covers the whole frequency range, however, with box or
diamond truncation only selected frequencies in the range are covered
and introduction of new tones or higher order intermodulation products
leads to substantial growth in the number of basis functions (3.45) and,

consequently, in computational cost of the solution.

3.4 NUMERICAL RESULTS

All simulations described in this section were performed in Matlab 6.5.0
(R13), running on a SUN Blade-1000 workstation with 900 MHz UltraS-

PARC-IIl CPU, 8 MB L2 cache and 5 GB of physical RAM.

Because Matlab environment uses interpreted programming language
[28], CPU time was recorded only for the time required to solve the Jaco-
bian matrix (averaged over several Newton’s iterations). Recording total

simulation time would include all the overhead associated with the inter-
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FIGURE 3.8. Frequency response of filter banks corresponding to the wavelet
(top) and Fourier (bottom) transforms.
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preter and possibly other implementation issues and would produce con-
taminated and therefore misleading results. Matlab 6.x sparse matrix
solver relies on the UMFPACK package ([29], [30]). Matlab’s left matrix
division operator was used to invoke the matrix solver, which in this case
performs LU decomposition using Gaussian elimination with partial piv-
oting algorithm. By default, the solver performs column approximate min-
imum degree preordering before performing Gaussian elimination. It was
established that explicit utilization of other preordering algorithms is
extremely beneficial for the steady state analysis problems. Symmetric
approximate minimum degree (SAMD) preordering was used for Jacobi-
ans arising from the Fourier series expansion, while for the wavelet
expansion it appeared to be possible to use symmetric reverse Cuthill-

McKee (SRCM) preordering ([29]).

In both examples diamond truncation was used for Harmonic Balance

and trivial truncation for wavelet expansion.

All the results of wavelet expansion presented in this section were
obtained with Daubechies wavelets of second order. Some experiments
were also performed with Haar wavelets and higher orders of Daubechies
wavelets. Haar expansion produced poor results in both accuracy and
convergency, while higher order Daubechies wavelets produced essen-
tially the same accuracy and convergence as the second order, but at a

slightly higher computational cost.
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3.4.1 CASE STUDY: CASCODE LNA

A 900 MHz cascode LNA was considered in the first example. The ampli-
fier (Fig. 3.9) consists of 2 BJTs with DC bias and impedance matching
networks. A simple Ebers-Moll injection model (Fig. 3.10) was used for
both BJTs. Even though this model probably is not accurate at the higher
range of simulated frequencies, the goal of this experiment is to validate
wavelet formulation, so as long as the same model is used for both Har-

monic Balance and wavelet method, analysis results should match.

C

- e
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__0.29p|: /. \ Il l 0.99 Ele ]2 = [S%g _]E

B
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FIGURE 3.10. Ebers-Moll injection model for BJTs.
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FIGURE 3.9. Cascode LNA circuit.

Under all these assumptions, total size of MNA equations in this example

was 25.

The first experiment is a 900 MHz single tone simulation, which is rou-
tinely performed during design stage of such amplifiers to determine gain
and 3dB compression point. Up to the 16-th order intermodulation prod-
ucts had to be retained for this simulation to ensure convergence and

accuracy. Output power delivered to the load at first (900 MHz), second
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(1800 MHz) and third (2700 MHz) harmonics versus the input power is
plotted in Fig. 3.11. Both methods are in excellent agreement with each
other and with simulations performed independently in [27]. Both meth-
ods also exhibited essentially the same convergence and computational
cost, which is understandable given the small size of the problem (Jaco-
bian size was 775 x 775 with 16,470 nonzero entries for Fourier series and

800 x 800 with 10,827 nonzero entries for wavelets).

Single tone input, 900MHz
_10 T T T T T T T
—— Harmonic Balance
—— Wavelets

-20

-30

1st harmonic
-50

Output power, dBm

-60

=70

2nd harmonic

_80 - -
3rd harmonic
-90 i i i i i i
-55 -50 —-45 -40 -35 -30 -25 -20 -15

Input power, dBm

FIGURE 3.11. Single tone input simulation results for the cascode LNA in Fig.
3.9.
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Second experiment involves the same circuit under multitone excitation,
with two tone input signals of the same power and frequencies of 900 and
910 MHz. Purpose of this experiment is to validate speed and accuracy of
the wavelet expansion on computations of the third order in-band inter-
modulation products at 920 and 930 MHz. Simulation results are shown

in Fig. 3.12 and are in excellent correspondence with each other. In each

Two tone input, 900+910 MHz

T T T T T
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T
—— Harmonic Balance
—— Wavelets

-30+
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o o o o
I I I I

Output power, dBm
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@
o
T

920 MHz

_90 I

-100 -

930 MHz
-110 .

-120 | | |
-55 -50 -45 -40 -35 -30 -25 -20
900 MHz input power, dBm

FIGURE 3.12. Two tone input simulation results for the cascode LNA in Fig. 3.9.

case (HB and wavelets) intermodulation products were computed with Ny

ranging from 5 to 22 (maximum value for HB given software implementa-
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tion and available memory). To compare computational complexity of both
methods, number of nonzero elements in the Jacobian and average time
for one LU decomposition was recorded and is shown as a function of Ny
in Fig. 3.13 and Fig. 3.14 respectively. Detailed data for Ny = 6, 12, 18

and 22 can be also found in tables 3.3-3.6.

TABLE 3.3. Computational cost comparison for cascode LNA (Fig.
3.9) at Ny = 6.

Harmonic

Balance Wavelets
Frequency grid size 43 556
Time grid size 85 1,112
Jacobian size 2125 x 2125 27800 x 27800
Number of nonzero elements 114,219 386,976
Sparsity ratio 2.5% 0.05%
Memory storage size, MBytes 1.35 4.6
Average CPU time for preordering, seconds 0.17 0.26
Average time per LU/FBS, seconds 1.8 7.7
Number of Newton iterations 5 5

TABLE 3.4. Computational cost comparison for cascode LNA (Fig.
39) at NH =12.

Harmonic

Balance Wavelets
Frequency grid size 157 1,102
Time grid size 313 2,204
Jacobian size 7825 x 7825 55100 x 55100
Number of nonzero elements 1,489,284 747,174
Sparsity ratio 2.4% 0.025%
Memory storage size, MBytes 17.5 9.4
Average CPU time for preordering, seconds 2.5 0.5
Average time per LU/FBS, seconds 70 15

Number of Newton iterations 5 5
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Comparison of memory requirements

10 ¢ T T T y T
[| — Fourier series :
[| —— Wavelets

r| — — Asymptotic slopes

Number of nonzero elements

10 : : : : x
10
Maximum order of IM components

FIGURE 3.13. Number of nonzero elements in Jacobian for the cascode LNA in

Fig. 3.9.

TABLE 3.5. Computational cost comparison for cascode LNA (Fig.

3.9) at N = 18.

Harmonic

Balance Wavelets
Frequency grid size 343 1,648
Time grid size 685 3,296
Jacobian size 17125 x 17125 82400 x 82400
Number of nonzero elements 7,085,619 1,176,654
Sparsity ratio 2.4% 0.017%
Memory storage size, MBytes 83.1 14.8
Average CPU time for preordering, seconds 7 0.8
Average time per LU/FBS, seconds 840 22
Number of Newton iterations 5 5
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FIGURE 3.14. Average CPU time per LU decomposition of Jacobian for the

cascode LNA in Fig. 3.9.

TABLE 3.6. Computational cost comparison for cascode LNA (Fig.

39) at NH =22.

Harmonic

Balance Wavelets
Frequency grid size 507 2,012
Time grid size 1,013 4,024
Jacobian size 25325 x 25325 100600 x 100600
Number of nonzero elements 15,462,403 1,400,370
Sparsity ratio 2.4% 0.014%
Memory storage size, MBytes 181.3 17.6
Average CPU time for preordering, seconds 278 1.0
Average time per LU/FBS, seconds 2,980 28
Number of Newton iterations 5 5
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As can be seen from Figures 3.13 and 3.14, experimental data for the
comparison of computational cost follows the trends predicted by analysis
performed in Section 3.3 (Fig. 3.7). Even though trivial truncation results
in a large matrix size for wavelet expansion, these matrices are extremely
sparse and wavelet method becomes computationally more favourable for
Ny 210. The trend of O(Ni,) derived in (3.46) is just too powerful and
quickly overcomes linear cost of wavelet expansion. CPU time rises even a
bit faster than that, which is understandable in view of the computational
complexity of the Gaussian elimination for large scale sparse matrices
arising from MNA equations ([18]) being O((, x Nx)1 +O‘) where 0 <a«1 is

a parameter which depends on sparsity ratio of the matrix NNZ/(NtNx)z.

Both Fourier series and wavelet expansions produce Jacobian with spar-
sity pattern similar to the original MNA equation except for the fact that
with the Fourier series blocks corresponding to nonlinear elements are
dense matrices. Because of this, sparsity ratio of HB Jacobian stays
essentially the same with increase in Ny (2.4% in this example), while
sparsity ratio of the wavelet Jacobian decreases as O(1/N,) thus com-
pensating for the increased matrix size. In fact, this compensation allows
the CPU time metric to stay O(N,) even when using a general purpose

matrix solver.

An example of the sparsity pattern for Jacobian arising from Fourier

series expansion is shown in Fig. 3.15. Note the dense blocks correspond-
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ing to the nonlinear elements are dominating the nonzero element count.
These blocks account for 98.5% of nonzero elements, thus also dominat-

ing computational cost in terms of CPU time.
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FIGURE 3.15. Sparsity pattern for the Jacobian arising from Fourier series
expansion for cascode LNA in Fig. 3.9 with Ny = 12. Dense blocks account for
98.5% of nonzero elements.
Fig. 3.16 show sparsity pattern of this Jacobian after SAMD reordering.
By comparison, Fig. 3.17 shows the sparsity pattern obtained after SRCM

reordering. RCM algorithm tries to find a reordering that produces a
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bandlimited structure. As could be expected, SRCM reordering in this
case performs quite poorly because of the dense blocks in the sparsity
pattern of the original Jacobian. The resulting matrix structure in Fig.
3.17 has fairly high bandwidth, while it is known ([29]) that the band
experiences significant fill-in during LU decomposition (Fig. 3.18), leading
to high memory and CPU time requirements. On the other hand, mini-
mum degree algorithms try to find such reordering that it would produce
a structure with large blocks of contiguous zeros which do not fill in dur-

ing factorization (Fig. 3.19).

Jacobian reordered
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FIGURE 3.16. Jacobian in Fig. 3.15 after symmetric approximate minimum
degree reordering.
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Jacobian reordered
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FIGURE 3.17. Jacobian in Fig. 3.15 after symmetric reverse Cuthill-McKee
reordering.
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FIGURE 3.18. Sparsity pattern of the LU factors for SAMD-reordered HB
Jacobian (Fig. 3.16).




Chapter 3: Steady state analysis of nonlinear circuits 85

LU of reordered Jacobian
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FIGURE 3.19. Sparsity pattern of the LU factors for SRCM-reordered HB
Jacobian (Fig. 3.17). Note significant fill-ins within the band that result in
almost 2-fold increase in the nonzero elements count (as compared to SAMD in
Fig. 3.18).

Compare this to the sparsity patterns of the Jacobian obtained from
wavelet expansion (Figures 3.20-3.23). Jacobian (Fig. 3.20) has sparse
bandlimited blocks in place of dense blocks in the HB Jacobian (Fig.
3.15). Size of the wavelet Jacobian is much larger, because both were
obtained with N = 12 and wavelet expansion with trivial truncation uti-
lizes larger frequency grid. However, SRCM reordering works extremely
well for such matrices and produces an extremely narrowband matrix
(Fig. 3.22). Theoretical computational cost for solving narrowband matri-
ces ([32], pp. 149-153) is O(N), or more precisely O(Npgq) floating point
operations, where p and g are the bandwidths of the upper and lower tri-

angles respectively. For N = 55100 and p = ¢ =200 this results in compu-




Chapter 3: Steady state analysis of nonlinear circuits 86

tational complexity of approximately 2.2 Gflops. With the computer rated
at approximately 700 Mflops/s on dense matrix computations (see
Appendix A.3) and a customized bandlimited matrix solver, theoretically
we could achieve CPU time of several seconds. Recall (Table 3.4) that
solution of this matrix required only 15 seconds of CPU time with a gen-
eral purpose matrix solver and all the overhead associated with sparse
matrix storage. This illustrates the point that a well-engineered general
purpose matrix solver can provide performance that rivals that of the

solvers custom tailored for a specific problem.

x 10* Jacobian reordered

nz = 747174 4

FIGURE 3.21. Jacobian in Fig. 3.20 after symmetric approximate minimum
degree reordering.
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FIGURE 3.20. Sparsity pattern for the Jacobian arising from wavelet expansion
for cascode LNA in Fig. 3.9 with Ny = 12.
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FIGURE 3.22. Jacobian in Fig. 3.20 after symmetric reverse Cuthill-McKee
reordering. The matrix becomes bandlimited with a fairly narrow and sparse

band.
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FIGURE 3.23. In-band sparsity pattern of the LU factors for SRCM-reordered

wavelet Jacobian (Fig. 3.22).
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3.4.2 CASE STUDY: GILBERT CELL MIXER

The second example involves a BJT Gilbert cell mixer circuit that consists
of 9 transistors (including 3 as current sources), DC bias and impedance
matching networks (Fig. 3.24). BJTs are represented by Ebers-Moll injec-
tion models (Fig. 3.10). Transformers are assumed to be ideal 1:1 convert-
ers. Under these assumptions total size of the MNA equations (3.1) is

equal to 37.
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FIGURE 3.24. Gilbert cell mixer circuit
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The mixer was configured for down conversion with LO input at 1 GHz,
RF input at 900 MHz and IF output at 100 MHz. Inputs and output were

matched to 50 Ohms active impedance at their respective frequencies.

The first experiment is a single tone LO input power sweep simulation
often performed to estimate mixer operational point for LO bias. Results
of the simulation (magnitude of second harmonic of voltage at node N<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>