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ABSTRACT

With current advances in electronics, numerical methods once applicable

only to analog design are becoming essential for digital design as well. The

scale of present day analog and, particularly, digital design requires that

the traditional numerical techniques for analysis and simulation be much

more effective than in the past. Development of not only efficient, but

gracefully scalable numerical methods is a top priority in Electronics

Design Automation. This work attempts to treat the problem of efficient

and scalable numerical methods for EDA in the scope of multiresolution

analysis. It shows how analysis and simulation problems can be treated

in a systematic way based on the generalized operator equation formula-

tion. Wavelet bases are presented within this framework. The thesis puts

particular emphasis on the circuit analysis and simulations applications.

The thesis presents a newly developed Harmonic Balance-like method for

steady state analysis of nonlinear circuits under periodic excitations,

which is representative of the class of problems described by nonlinear

differential equations. The technique features sparse representation of

both derivative operator and nonlinear term and shows significant advan-

tage over traditional methods, particularly for analysis of large scale,

highly nonlinear, multitone and broadband circuits.

A number of other applications are also considered, namely transient

analysis of nonlinear circuits, interconnect macromodelling and capaci-

tance extraction for multiconductor transmission lines. A new approach

to capacitance extraction using wavelets is presented featuring extremely

aggressive thresholding of the stiffness matrix.
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1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

This thesis is dedicated to the treatment of selected problems in Electron-

ics Design Automation (EDA) in general, and circuit analysis in particular,

with the help of wavelets. The broad range of numerical problems arising

in EDA field can be systematically treated in the mathematical framework

of functional analysis, linear algebra and approximation theory. From the

mathematical point of view, most of these problems can be represented in

the form of either differential or integral operator equations. With such

approach, wavelet methods become very mainstream. In fact, the only dif-

ference is that wavelets are just another basis for expansion of operator

equations. This basis, however, possesses some special properties that,

when taken proper advantage of, can provide algorithms that are signifi-

cantly superior to the ones utilizing traditional bases in terms of accu-

racy, speed and memory storage requirements.

Over the past 15 years substantial progress has been made in the devel-

opment of both wavelet theory and applications. However, among many

applications of wavelets, numerical analysis has often been overlooked in

favour of signal processing and approximation theory. Moreover, if we

look at the numerical applications, EDA problems in particular have not
www.manaraa.com
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Chapter 1: Introduction 2
been thoroughly studied. From a number of publications that appeared in

the last 10 years, many seem to suffer from the same syndrome “let’s

show that this can be also done with wavelets” rather than concentrating

on development of fast algorithms that take advantage of wavelet proper-

ties. Development of the mathematical theory of wavelets initially caused

certain excitement in the scientific computations community, however we

will show that not all applications of wavelets result in immediate advan-

tages, particularly in terms of efficiency. Great care should be taken with

respect to claims of efficiency. In some cases, established traditional non-

wavelet methods are so well researched, engineered and implemented,

that direct CPU time comparison does not show particular advantage of

wavelet methods.

1.2 OUTLINE OF THE THESIS

This thesis is organized as following.

Chapter 2 contains essential mathematical background from the areas

that are necessary to understand the applications described further. We

start with overview of linear analysis, Hilbert spaces and operators and

proceed to derive wavelet formulation on simple illustrated examples

leading to a concept of multiresolution analysis. The chapter concludes

with discussion of wavelet properties and Fast Wavelet Transform.
www.manaraa.com



Chapter 1: Introduction 3
One of the reasons for the slow introduction of wavelets into the engineer-

ing curricula is the visible lack of accessible texts, particularly concen-

trating on the numerical applications. The only one that, in author’s

opinion, presents theory in a proper manner ([8]) is written by a physicist,

not an engineer (although approach is quite similar), and was published

by a university in Switzerland, thus not widely known and available. This

is the motivation behind inclusion of a rather lengthy wavelet background

in Chapter 2. This material should not be viewed as a comprehensive

wavelet tutorial, but should contain all the background relevant to the

discussed applications.

Chapter 3 considers application of wavelets to the solution of steady state

analysis of nonlinear circuits. This problem is described by a nonlinear

ordinary differential equation with periodic boundary condition. We aban-

don the traditional approach of expanding the equation in Fourier basis

in favour of wavelet bases. Because of their local support, wavelet bases

provide sparse O(N) representation for the Jacobian matrix. Computa-

tional cost analysis is performed that shows that wavelet expansion gains

significant advantage over traditional approach, particularly for multi-

tone, highly nonlinear, large scale and broadband circuits. Theoretical

results are supported by two numerical case studies.

Chapter 4 addresses other applications of wavelets to the analysis of

lumped and distributed parameter circuits. First, we review transient
www.manaraa.com
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analysis of nonlinear lumped parameter circuits and conclude that in this

area it is extremely difficult for wavelet methods to compete with estab-

lished time marching schemes. The rest of the chapter is dedicated to

analysis of distributed parameter circuits, particularly quasi-TEM inter-

connect analysis. Review of the interconnect macromodelling shows that

wavelets have potential for analysis of nonuniform transmission lines, but

proof of passivity has to be provided before this potential can be realised.

The chapter concludes with discussion of the problem of extracting trans-

mission line physical parameters, particularly capacitance matrix, for

interconnect simulations.

Chapter 5 summarizes the material presented in this thesis and outlines

possible directions for future research.

1.3 ORIGINAL CONTRIBUTION

The primary original contribution of this thesis is in the development of

wavelet technique for steady state analysis of nonlinear circuits. The prin-

cipal disadvantage of the traditional Harmonic Balance technique is in

the appearance of dense blocks in Jacobian matrix, which dominate O(N4)

computational complexity of the problem. Harmonic Balance formulation

quickly becomes too expensive to use for highly nonlinear and multitone

circuits. The wavelet method developed in this thesis provides O(N) sparse

Jacobian by construction and although it does not show particular
www.manaraa.com



Chapter 1: Introduction 5
advantages over traditional methods for single tone simulations and is

slower than traditional methods for mild to medium nonlinearities due to

primitive spectrum truncation technique, it shows significant advantage

for highly nonlinear and multitone circuits. Wavelet method can be fur-

ther accelerated by developing time- and/or frequency domain adaptive

schemes. In addition, it opens the whole new area of exploring steady

state methods in bases other than Fourier series.

The secondary contribution of this thesis is in the area of capacitance

extraction. Application of wavelets to the capacitance extraction has been

known before from the literature. The original contribution here is in the

exploitation of the idea that surface charge on the conductor can be com-

puted accurately without accurate computations of the charge distribu-

tion itself. This allows development of the hard thresholding concept and

it’s successful application to extraction problems. Wavelet extraction

methods with hard thresholding have potential of successfully competing

with the best available techniques for extraction of physical parameters.
www.manaraa.com



2. BACKGROUND: WAVELETS

2.1 LINEAR ANALYSIS

Linear analysis is the field of mathematics that is cornerstone to the

numerical problems arising in EDA industry. This section is intended to

provide a brief, accessible, yet rigorous background on the linear spaces,

vectors, projections and linear operators. Theory presented here will be

extensively used later in this chapter when we will proceed to the wavelet

analysis as well as in subsequent chapters dealing with applications of

wavelets to various computationally extensive EDA problems.

There is a vast amount of books covering linear analysis. Definitions and

discussions presented here are for the most part based on an excellent

text [1], which can be consulted for more detailed presentation of the

material.

2.1.1 LINEAR SPACE

The set S containing vectors a, b, c,... is a linear space if the following

rules for addition (2.1)-(2.4) and multiplication (2.5)-(2.8) apply:

. (2.1)

There exists a zero vector  such that

a b+( ) c+ a b c+( )+=

0 S∈
www.manaraa.com

6



Chapter 2: Background: wavelets 7
. (2.2)

For every , there exists  such that

. (2.3)

. (2.4)

Multiplication rules (  and  are scalars):

(2.5)

(2.6)

(2.7)

(2.8)

Linear space S is said to have dimension n if it possesses a set of n inde-

pendent vectors and if every set of n+1 vectors is dependent. If for every

positive integer n we can find n independent vectors in S, then S has infi-

nite dimension.

Basis of linear space S is a set of independent vectors , such that for

any vector

(2.9)

The representation (2.9) with respect to a given basis is unique.

a 0+ 0 a+ a= =

a S∈ a S∈–

a a–( )+ a–( ) a+ 0= =

a b+ b a+=

α β

α βa( ) αβ( )a=

1a a=

α a b+( ) αa αb+=

α β+( )a αa βa+=

ϕk{ }

x S∈

x αkϕk
k( )
∑=
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2.1.2 INNER PRODUCT

S is called an inner product space if for every ordered pair of vectors

, there exist a unique complex scalar denoted by that satis-

fies all of the following conditions:

(2.10)

where overbar indicates complex conjugate.

(2.11)

, for all (2.12)

 with equality if and only if x=0 (2.13)

Real inner products are also of significant practical interest. For them, the

first condition simplifies to:

. (2.14)

On interval inner product is usually computed as a weighted inte-

gral:

. (2.15)

x y,( ) S⊂ x y,〈 〉

x y,〈 〉 y x,〈 〉=

x y z,+〈 〉 x z,〈 〉 y z,〈 〉+=

αx y,〈 〉 α x y,〈 〉= α C∈

x x,〈 〉 0≥

x y,〈 〉 y x,〈 〉=

α β,( )

f g,〈 〉 w ζ( ) f ζ( )g ζ( ) ζd
α

β

∫=
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Chapter 2: Background: wavelets 9
Throughout this work the weighting function will be assumed identi-

cal to 1 unless explicitly noted otherwise.

2.1.3 ORTHOGONALITY

The concepts used throughout this work involve the notions of orthogo-

nality and orthonormality.

Two vectors x and y are orthogonal if their inner product is zero:

(2.16)

Set of basis functions  is orthogonal if the following is true:

 if and only if  and zero otherwise. (2.17)

Whenever  in (2.17) is equal to 1, such basis is also called orthonormal.

2.1.4 CONVERGENCE IN A NORMED LINEAR SPACE

A linear space S is called a normed (equipped with a norm) linear space if,

for every vector , there is assigned a unique real number

such that the following rules apply:

 with equality if and only if (2.18)

 where  is an arbitrary scalar (2.19)

w ζ( )

x y,〈 〉 0=

ϕk{ }

ϕ i ϕ j,〈 〉 δ 0>= i j=

δ

x S∈ x R∈

x 0≥ x 0=

αx α x= α
www.manaraa.com
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(2.20)

There exist many different definitions of the norm, but by far the most

popular is the norm induced by the inner product:

(2.21)

One of the important consequences of introduction of the normed linear

spaces is that a norm provides a measure of the “closeness” of one vector

to another. One can note from rule (2.18) that if and only if x

and y are the same vector. Therefore, closeness between x and y can be

mathematically indicated as .

This observation brings up a concept of convergence. Among many forms

of convergence, there are two that are fundamental for establishing con-

crete “boundaries” on the linear space. The type of boundary that is nec-

essary is the one that ensures that the limit on a vector sequence in a

linear space is also contained in that space.

In a normed linear space S, a sequence of vectors converges to a

vector if, given an arbitrarily small number , there exist a num-

ber N such that whenever . Convergence of xk to x is usu-

ally denoted as  or

(2.22)

x1 x2+ x1 x2+≤

x x x,〈 〉=

x y– 0=

x y– ε<

xk{ }
k 1=

∞

x S∈ ε 0>

x xk– ε< k N>

xk x→

xk
k ∞→
lim x=
www.manaraa.com
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We can also note here that due to the continuity of the inner product,

order of application of the limit and the inner product to a sequence con-

verging is S is interchangeable:

(2.23)

The notion of convergence introduced above is a strict one and it also

implies Cauchy convergence, which is defined as following.

In S, a sequence converges in Cauchy sense if, given an arbi-

trarily small number , there exist a number N such that

whenever :

(2.24)

Convergence in Cauchy sense is a weak form of convergence and in it’s

turn does not necessarily imply strict convergence in sense of (2.22). In

other words, it is possible for two vectors of the sequence to become arbi-

trarily close to each other without the sequence itself approaching a limit

in S. This observation leads to the introduction of complete spaces, in

which Cauchy convergence does imply strict convergence.

A normed linear space is said to be complete if every Cauchy sequence in

the space converges to a vector in that space.

xk h,〈 〉
k ∞→
lim xk h,

k ∞→
lim〈 〉=

xk{ }
k 1=

∞

ε 0> xm xn– ε<

min m n,( ) N>

xm xn–
m n ∞→,

lim 0=
www.manaraa.com
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2.1.5 HILBERT SPACE

A linear space is called a Hilbert space if it is complete in the norm

induced by it’s inner product. Therefore, in any Hilbert space, Cauchy

convergence implies convergence.

In numerical analysis we are often concerned with subsets of vectors in a

linear space. Such subsets are obtained by approximate solutions of the

differential and integral equations describing the problem, be it initial

value problem or boundary value one.

One such subset of vectors is called a linear manifold. If S is a linear

space and are arbitrary scalars, then M is a linear manifold of S, pro-

vided that whenever . It is easy to show that M is also

a linear space and inherits many of the properties of S. One can view a

linear manifold as a “subspace” in S, e.g. one spanned by a finite dimen-

sional subset of basis vectors in an otherwise infinitely dimensional

space. A linear manifold is closed if it contains the limits of all sequences

that can be constructed from it’s members. Therefore, a closed linear

manifold in a Hilbert space is a Hilbert space on it’s own.

Within the framework of Hilbert spaces, it is possible to construct a gen-

eral approach to approximation of vectors and functions. Let x be a vector

in Hilbert space H and let  be an orthonormal set in H:

α β,

αx βy+ M∈ x y, M⊂

uk{ }
k 1=

m

www.manaraa.com
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. (2.25)

“Best approximation”  of x on  is then given by

(2.26)

which also constitutes projection of x onto a closed linear manifold Hm, a

Hilbert space spanned by . As a consequence of this, best

approximation performed according to (2.26) also produces a residue vec-

tor  which is orthogonal to xm.

The above results for the approximation of a vector by a vector

can be generalized. We will need a concept of manifold that is

orthogonal to a given manifold. If M is a linear manifold in H, then a vec-

tor is a member of set if it is orthogonal to every vector in M.

The set is also a linear manifold since linear combinations of vectors

in are also orthogonal to vectors in M. In fact, is also closed. The

closed linear manifold  is then called the orthogonal complement to M.

2.1.6 PROJECTION THEOREM

The concept of “best approximation” introduced above can now be formu-

lated rigorously using the notion of the orthogonally complementary

spaces. This formulation is also know as the Projection Theorem which is

xm αkuk
k 1=

m

∑=

αk{ }
k 1=

m
uk{ }

k 1=

m

αk x uk,〈 〉=

uk{ }
k 1=

m

em x xm–=

x H∈

xm Hm H⊂∈

e H∈ M
⊥

M
⊥

M
⊥

M
⊥

M
⊥
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fundamental to the approximation theory and numerical methods for

solution of operator equations.

Let x be any vector in a Hilbert space H, and let be a closed linear

manifold in H. Then, there is a unique vector , closest to x in

the sense that for any vector y in M. Furthermore, the

necessary and sufficient condition that is the unique vector minimiz-

ing is that the approximation residue defined as is con-

tained in the orthogonal complement  of the projection space M.

2.2 LINEAR OPERATORS IN HILBERT SPACE

2.2.1 MATRIX FORMULATION

Let S be a linear space. An operator L is a mapping that assigns a vector

 another vector :

(2.27)

The operator L is linear if the mapping (2.27) is such that for any two vec-

tors x and y in the domain of L, their linear combination is also in

the domain of L and the following holds:

(2.28)

M H⊂

yk M H⊂∈

x yk– x y–≤

yk

x yk– e x yk–=

M
⊥

x S∈ y S∈

Lx y=

αx βy+

L αx βy+( ) αLx βLy+=
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Equation (2.27) can be solved for x. First, we write a best approximation

for x in basis :

(2.29)

(2.30)

take the inner product of both sides with another basis :

(2.31)

(2.32)

(2.33)

Equation (2.33) is a matrix equation for unknown column vector and

can be solved using available techniques. Matrix A, defined as

, (2.34)

is a projection of operator L onto finite dimensional closed linear manifold

spanned by and . The process of approximating a lin-

ear operator with a matrix is also know as discretization of the operator.

uk{ }
k 1=

m

x αkuk
k 1=

m

∑
m ∞→
lim=

Lu L αkuk
k 1=

m

∑
m ∞→
lim αkLuk

k 1=

m

∑
m ∞→
lim= =

vl{ }
l 1=

m

αkLuk
k 1=

m

∑
m ∞→
lim vl,〈 〉 y vl,〈 〉=

αk Luk vl,〈 〉
k 1=

m

∑
m ∞→
lim y vl,〈 〉=

Luk vl,〈 〉 α k βl=

αk

Akl Luk vl,〈 〉=

uk{ }
k 1=

m
vl{ }

l 1=

m
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Bases and can be the same or they can be different. Depending

on and , (2.34) can result in different well-known discretization

schemes, such as Method of Moments [2], Galerkin method [2], Finite Dif-

ferences [3] and Finite Elements [4].

For example, if and are interpolating polynomials on an inter-

val and order of polynomial is 2 more than the order of polyno-

mial, the discretization scheme becomes Finite Differences. For arbitrary

and the method is usually referred to as Method of Moments,

and for as Galerkin method. Basis set is called expan-

sion functions while basis set is usually referred to as weighting or

testing functions.

If are eigenvectors of L, the resulting matrix A is diagonal with eigen-

values of L on the main diagonal.

2.2.2 NEED FOR NEW BASES

Efficiency of all discretization techniques primarily depend on how “good’

or “bad” a basis is. The obvious optimal basis for discretization is the

eigenfunctions of operator L. However, this involves solution of the eigen-

value problem which is cost prohibitive for most practical cases. A “good”

basis should be:

• easy to handle, i.e. to generate and to compute inner products;

• provide sparse representation of the operator;

uk{ } vl{ }

uk{ } vl{ }

uk{ } vl{ }

uk{ } vl{ }

uk{ } vl{ }

uk{ } vl{ }= uk{ }

vl{ }

uk{ }
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• provide well conditioned representation of the operator or allow efficient

preconditioning.

One of the principal disadvantages for FEM/FD as well as for traditional

MoM/Galerkin schemes is the need to regenerate the bases and

and recompute matrix A (2.34) whenever a problem does not con-

verge to desirable accuracy with m basis functions. Grid refinement tech-

niques can be applied instead of regeneration in some cases, but a

systematic and generalized way of refinement must be established. Fou-

rier basis as well as different families of orthogonal polynomials provide

means for refinement without regenerating the basis, but they don’t have

local support, which in many cases leads to a dense matrix.

Whenever L, x and/or y in equation (2.27) have frequency content that is

localized in space/time, different degrees of resolutions in different

regions must be applied for accurate representation at low cost. Win-

dowed Fourier transform can provide necessary localization framework

for such scenario. However, the problem with the windowed Fourier

transform is that for typical real-life signals and functions, high frequency

components would have a short timespan and won’t be properly localized

with a certain window size, while the low-frequency components would

have a long timespan and won’t be captured by the same window at all. A

work on exploring a variable window width transform led to construction

of one of the first families of wavelets, modulated Gaussian or morlets [5].

uk{ }

vl{ }
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A generally “optimal” basis should retain advantages of the FD/FEM

(local support, sparse representation) with the orthogonality of resolution

levels inherent to Fourier series and orthogonal polynomials.

2.3 WAVELET CONCEPTS

2.3.1 FROM PULSE FUNCTIONS TO HAAR WAVELETS

Let us illustrate the idea of orthogonal refinement with an example of

approximating a function in basis of pulse functions (Fig. 2.1). Graph on

the left represents approximation in rather coarse basis. To improve the

approximation, we refine the basis such that each basis function has half

the support of the original basis (right graph). This reduces approxima-

tion error, however all the approximation coefficients (2.26) have to be

completely recalculated in the new refined basis.

Let’s denote space spanned by the original basis as and one

spanned by the refined basis as . The question that arises

here is that is it possible to construct a basis which will comple-

ment in ? In other words, is it possible to find a set of basis

functions that will refine the original approximation without the need to

recalculate already existing coefficients?

For such a simple basis it’s indeed trivial to construct a complementary

basis (Fig. 2.2). It’s easy to see that complements to the

ϕ j k,{ } V j

ϕ j 1+ k,{ } V j 1+

ψ j k,{ }

ϕ j k,{ } V j 1+

ψ j k, x( ) ϕ j k, x( )
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refined basis . Expansion in new basis will retain all the previ-

ously calculated coefficients and only half has to be calculated from

scratch.

original basis refinement basis

FIGURE 2.1. Refinement in the basis of pulse functions.

ϕ j 1 k,+ x( )

ϕ j 1 k,+ x( )ϕ j k, x( ) ψ j k, x( )

FIGURE 2.2. Refinement through orthogonal complement.
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We should also mention here that is not only complementary, but

also orthogonal to . This is a very comfortable fact provided that

both bases are also orthogonal on their own.

Such basis functions are Haar functions, named after a mathematician

who first proposed such construction in 1911 ([5]). However, it was not

until 1980s when these functions were incorporated into rigorous mathe-

matical framework of multiresolution analysis. Basis functions

that capture average value of the approximated function were given the

name of scaling functions, while that represent variation were

given the name wavelet functions or wavelets1.

Though Haar wavelets are not optimal for many applications, their sim-

plicity is useful for illustration of many wavelet concepts on a very intui-

tive level.

2.3.2 TRANSLATIONS AND DILATIONS.

At this point we have introduced the double indexation of wavelets and

scaling function. The index pair (j,k) reflects the fact that a wavelet basis

set (Fig. 2.3) is formed by translations and dilations of original mother

wavelet or scaling function (Fig. 2.4). The first index j refers to

the scaling level, while the second index k refers to the translated position

1. Literal translation of french ondelette.

ψ j k, x( )

ϕ j k, x( )

ϕ j k, x( )

ψ j k, x( )

ψ0 0, ϕ0 0,
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of this basis function on this particular scaling level, such that

and  form orthonormal bases:

(2.35)

(2.36)

At higher resolution levels, denoted by higher values of j, greater ranges of

k are required to span the same interval. In fact, with common dyadic

ϕ j k, x( )

ψ j k, x( )

ϕ j k, x( ) 2
j
ϕ0 0, 2

j
x k–( )=

ψ j k, x( ) 2
j
ψ0 0, 2

j
x k–( )=

−1
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x

wavelet family: Haar0
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FIGURE 2.3. Haar basis on [-1, 1].
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construction of basis given by (2.35)-(2.36), the number of basis functions

on each resolution level doubles.

2.3.3 BIORTHOGONALITY.

Bases in (2.25) and (2.26) are called synthesis basis and analysis

basis respectively. In wavelet analysis terms reconstruction and decom-

position are also in common use and have essentially the same meaning.

In general case, they need not be the same1. Analysis basis will then be

1. A well-know in engineering example of biorthogonality is Shannon basis, which con-
sists of delta functions for analysis and sinc functions for synthesis.
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FIGURE 2.4. Translations and dilations of the mother wavelet.

ϕ j k, x( )
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denoted , with synthesis basis as before. Wavelet bases

, and , must satisfy biorthogonality relations

[8]:

(2.37)

(2.38)

(2.39)

(2.40)

is then called a dual function of and vice versa. The same

applies also to  and .

2.3.4 REFINEMENT EQUATION.

An important concept of wavelet analysis is the existence of refinement

equation, which allows representation of basis functions (both scaling

functions and wavelets) at level k in terms of scaling functions at level

k+1.

As it can be easily seen from Fig. 2.5, refinement coefficients for the Haar

basis indeed exist and can be found by observation. In general case we

can write refinement equations for biorthogonal bases:

ϕ̃ j k, x( ) ϕ j k, x( )

ϕ̃ j k, x( ) ψ̃ j k, x( ) ϕ j k, x( ) ψ j k, x( )

ϕ̃ j k, ϕ j q,,〈 〉 δkq=

ψ̃i k, ϕ j q,,〈 〉 0, i j≥( )=

ψi k, ϕ̃ j q,,〈 〉 0, i j≥( )=

ψi k, ψ̃ j q,,〈 〉 δ ijδkq=

ϕ j k, x( ) ϕ̃ j k, x( )

ψ j k, x( ) ψ̃ j k, x( )
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(2.41)

(2.42)

(2.43)

(2.44)

Refinement coefficients , and , are not independent. They must

satisfy symmetry relations:

ψ x( ) ϕ x( )

ϕ 2x( ) ϕ 2x 1–( )

ψ x( ) 1

2
---ϕ 2x( ) 1

2
---– 

  ϕ 2x 1–( )+=

ϕ x( ) 1

2
---ϕ 2x( ) 1

2
---ϕ 2x 1–( )+=

FIGURE 2.5. Refinement equation for Haar wavelets.

ϕ x( ) h jϕ 2x m–( )
m M–=

M

∑=

ψ x( ) g jϕ 2x m–( )
m M–=

M

∑=

ϕ̃ x( ) h̃ jϕ̃ 2x m–( )
m M–=

M

∑=

ψ̃ x( ) g̃ jϕ̃ 2x m–( )
m M–=

M

∑=

h j h̃ j g j g̃ j
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(2.45)

(2.46)

and, in the case of biorthogonal wavelets, biorthogonality relations also

hold:

(2.47)

(2.48)

(2.49)

(2.50)

For orthogonal (as opposed to biorthogonal) wavelets, similar conditions

immediately follow from (2.41)-(2.50) by setting  and .

Rather non-trivial proof of these formulas can be found in [5].

Equations (2.41)-(2.46) together form a system of equations for vectors

and . Each solution uniquely determines a family of wavelets containing

, and , . It is easy to see that the number of

possible solutions depends on the numbers and of nonzero coeffi-

cients in and . For , equations (2.41)-(2.46) are reduced to

gi 1+ 1–( )i 1+
h̃ i–=

g̃i 1+ 1–( )i 1+
h i–=

hl 2i– h̃l 2 j–
l( )
∑ δij=

gl 2i– g̃l 2 j–
l( )
∑ δij=

hl 2i– g̃l 2 j–
l( )
∑ 0=

h̃l 2i– gl 2 j–
l( )
∑ 0=

h̃ h= g̃ g=

h

h̃

ϕ̃ j k, x( ) ψ̃ j k, x( ) ϕ j k, x( ) ψ j k, x( )

M M̃

h h̃ M M̃ 2= =
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a system of 2 independent equations with 2 unknowns that produce a

unique orthogonal solution . For , there are no

known orthogonal solutions. For higher values of M, number of

unknowns exceeds the number of equations and additional restrictions

can be imposed to produce a solution that generates wavelets with desir-

able qualities. For example, for , there is one well known

orthogonal solution

, (2.51)

generating second order Daubechies wavelet (Fig. 2.6) and a biorthogonal

solution

, (2.52)

that generates a quadratic spline wavelet (Fig. 2.7) for the reconstruction

basis. Several other solutions are possible if we loosen the constraint of

with a more relaxed one of . For example, with

, and as before, 2 more solutions are possible (their

scaling functions are represented in Figs. 2.8 and 2.9 correspondingly):

, (2.53)

, (2.54)
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For higher values of M several orthogonal solution are possible. For exam-

ple, for M=8 there exist a solution in the Daubechies family (Fig. 2.10)

that maximizes the number of vanishing moments for given support width

(more on this later) and a solution in the Symlet family (Fig. 2.11) that

produces a most “symmetrical” wavelet among all orthogonal solutions.
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FIGURE 2.6. Scaling function generated by (2.51).
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FIGURE 2.7. Biorthogonal scaling functions generated by (2.52). Left:
reconstruction basis. Right: decomposition basis.
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2.3.5 MULTIRESOLUTION ANALYSIS.

We proceed with the concept of multiresolution analysis [5] on that

consists of successive approximation spaces Vj, sometimes also called

ladder of spaces:

(2.55)
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FIGURE 2.8. Biorthogonal scaling functions generated by (2.53). Left:
reconstruction basis. Right: decomposition basis.
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FIGURE 2.9. Biorthogonal scaling functions generated by (2.54). Left:
reconstruction basis. Right: decomposition basis.
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(2.56)

(2.57)

(2.58)
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FIGURE 2.10. Daubechies family wavelet and scaling function, M=8.
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FIGURE 2.11. Symlet family wavelet and scaling function, M=8.
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(2.59)

 such that  constitute an orthonormal

basis for (2.60)

Whenever the ladder of spaces Vj satisfies these five properties (2.55)-

(2.60), there exist a function  such that

(2.61)

Collection automatically constitutes

an orthonormal basis in  which satisfies following conditions:

, (2.62)

i.e.  is an orthogonal complement of Vj in Vj-1,

, (2.63)

i.e., all these subspaces are mutually orthogonal and by virtue of (2.56)

and (2.57) allow a decomposition of the space of square integrable func-

tions :

, (2.64)

and  spaces inherit the scaling property (2.58) from the Vj:

f ζ( ) V 0 f ζ n–( ) V o for all n Z∈∈→∈

ϕ∃ V o∈ ϕ 0 n, x( ) ϕ x n–( )=

V o

ψ

ProjV j 1+
f ProjV j

f f ψ j k,,〈 〉ψ j k,
k Z∈
∑+=

ψ j k, x( ) 2
j 2⁄ ψ 2

j
x k–( ) , k Z∈={ }

W j

V j 1+ V j W j⊕=

W j

W j⊥ Wi if j i≠

L
2 ℜ( )

L
2 ℜ( ) W j⊕

j Z∈

=

W j
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. (2.65)

Functions

(2.66)

that span are called wavelet functions, and corresponding func-

tions that span :

(2.67)

are called scaling functions.

There also exist other families of wavelets that are not orthogonal and/or

do not have scaling functions associated with them, but we will not con-

sider these families for the reasons explained later.

2.4 PROPERTIES OF WAVELETS

2.4.1 LOCAL SUPPORT

By limiting the number of nonzero refinement coefficients in (2.41)-(2.46),

we ensure that the wavelets and scaling functions generated by them

have local support. Local support means that , and ,

are all identical to zero outside of a closed interval. This is a very

important fact because wavelets not only generate a ladder of approxima-

f ζ( ) W j f 2
j– ζ( ) W 0∈↔∈

ψ j k, x( ) 2
j 2⁄ ψ 2

j
x k–( ) , k Z∈=

W j j Z∈,

V j j Z∈,

ϕ j k, x( ) 2
j 2⁄ ϕ 2

j
x k–( ) , k Z∈=

ϕ̃ j k, x( ) ψ̃ j k, x( ) ϕ j k, x( )

ψ j k, x( )
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tion spaces like Fourier basis and orthogonal polynomials, but also each

basis function (be it scaling or wavelet function) is responsible for approx-

imation of a vector only on a small interval, like the truncated on interval

polynomials used in FEM.

Because support is directly linked to the number of nonzero refinement

coefficient, it is also responsible for the “degree of freedom” we have while

constructing wavelets. As the refinement vectors and get longer, more

solutions of the refinement equations (2.41)-(2.50) are possible and there-

fore more restrictions can be imposed on them to produce a wavelet fam-

ily with desirable properties. This means that support width can be

viewed as a resource we can spend to construct a proper wavelet. The

trade-off for a wavelet family with wider support is the decrease in local-

ization ability.

Orthogonal wavelets necessarily have identical and and therefore,

identical support and identical properties for both decomposition and

reconstruction bases.

2.4.2 REGULARITY AND VANISHING MOMENTS

One can mention from the above examples that wavelets can be rather

unsmooth functions. Haar wavelet is piece wise constant and therefore is

not differentiable everywhere. Daubechies wavelets (e.g. Fig. 2.6) do not

have a well defined derivative, but they can be characterized by a certain

h h̃

h h̃
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degree of regularity. Regularity here is understood as a measure of the

smoothness of a function. Regularity of implies that the -th derivative

of a wavelet belongs to , i.e. is a square-integrable function. Regu-

larity directly corresponds to how fast frequency spectrum of the wavelet

vanishes towards higher frequencies.

Other important property of wavelets is the existence of vanishing

moments: wavelet is said to have L vanishing moments if the follow-

ing holds:

(2.68)

High number of vanishing moments also corresponds to how fast fre-

quency spectrum of the wavelet vanishes towards lower frequencies.

Scaling function may (e.g. for Coiflets) or may not (e.g. for Daubechies

wavelets) have higher order moments equal to zero.

Unfortunately, all of the above properties can not be achieved simulta-

neously. If we limit ourselves to local support wavelets, we can not get

infinite regularity - such wavelets should necessarily have at least almost

local support (e.g. exponential decay). For a given support width, one can

construct either a wavelet with highest number of vanishing moments

(Daubechies wavelets), which is highly irregular and asymmetry is well

pronounced, or a wavelet with least asymmetry (symlet), which will have

significantly smaller number of vanishing moments.

α α

L
2 ℜ( )

ψλ x( )

x
lψλ x( ) xd∫ 0 for l 0…L= =
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Support width directly translates into how well frequency spectrum of a

given wavelet is localized. The wider is the support, the better such wave-

let is localized in frequency domain (Fig. 2.12). This example clearly illus-

trates the property of time-frequency localization. Wavelets have zero

average and therefore have no frequency content at zero frequency. Wave-

lets with more coefficients also have more vanishing moments (N/2 van-

ishing moments for Daubechies family with N nonzero coefficients and

2N-1 support width). More vanishing moments translates to faster decay

of wavelet spectrum in low frequency range. One can also see that higher

order wavelets with wider support are fairly smooth and exhibit increas-

ingly oscillatory behaviour which translates to faster decay of the fre-

quency content towards the higher frequencies.

Orthogonal wavelets necessarily have identical and and therefore,

identical support for both and identical properties for decomposition and

reconstruction bases. Sometimes it becomes advantageous to put empha-

sis on different properties for the decomposition and reconstruction wave-

lets. For example, more vanishing moments lead to more effective

approximation, while greater regularity of the reconstruction basis results

in smooth synthesis of the approximated function. Biorthogonal wavelets

can provide exactly that additional degree of freedom. Earlier examples of

spline interpolating wavelets (Figs. 2.7-2.9) illustrate this observation.

Within the same “sum of support” for decomposition and reconstruction

h h̃
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FIGURE 2.12. Time-frequency localization. Daubechies wavelets with 4, 8, 12
and 16 coefficients and their frequency content.
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scaling functions, we can split this resource in different ways giving more

regularity to the reconstruction basis at the expense of decomposition.

2.4.3 FAST WAVELET TRANSFORM

In order for an orthogonal transform to be numerically efficient, there

should exist a fast algorithm of computing the expansion coefficients

(2.26). In general, transform is equivalent to multi-

plication of vector  by an  transform matrix T:

(2.69)

Computing (2.69) in general case requires O(N2) operations. If matrix T

has a special structure, faster algorithms exist, such as O(NlogN) FFT

algorithm for Fourier Transform.

We start construction of the Fast Wavelet Transform (FWT) with an exam-

ple of computing (2.69) in Haar basis with one level of scaling functions

and one level of wavelets ( , in Fig. 2.5 and their dilations along x

axis). Computing approximation coefficients corresponding to the scaling

functions requires computing of a moving average of vec-

tor x over two samples. This is equivalent to convolving x with a Finite

Impulse Response (FIR) digital filter with filter taps equal to [7].

Similarly, wavelet coefficients can be computed by convolving x with the

FIR  (Fig. 2.13).

xk{ }
k 1=

N αk{ }
k 1=

N⇒

xk[ ] N N×

αk[ ] Tk l,[ ] xl[ ]⋅=

ϕ ζ( ) ψ ζ( )

ϕ i ζ( ) ϕ ζ i–( )=

h
1

2
---

1

2
---,=

g 1

2
---–

1

2
---,=
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For each k samples of the input vector x, each of the LPF and HPF

will compute k samples of the approximation vector a[k] and k sam-

ples of the detail vector d[k] respectively. This is twice as much informa-

tion as compared to what we feed to the input. This redundancy occurs

because the filters are computing twice as many approximation coeffi-

cients as required by (2.26). In fact, because dilations of Haar wavelets

have zero overlap (Fig. 2.3), we only need every other entry of a[k] and

d[k]. This also makes sense from the signal processing point of view: the

initial spectrum of x[k] is being split into two complementary parts by the

pair of filters, such that each part has half the original bandwidth. This

means that the sampling frequency of a[k] and d[k] can be lowered 2

times by a process called downsampling without any loss of information.

The downsampling is performed by the decimators that are merely dis-

carding every other sample appearing at the input. At the output the sys-

H(z)

G(z)

2

2

x[k]

a[k]

d[k]

a[k/2]

d[k/2]

FIGURE 2.13. Computing one level of FWT with FIR filter bank.

H z( )

G z( )
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tem produces two vectors half the length of the original sequence. These

two vectors combined form together the  in (2.69).

One can notice that the filter taps for LPF and HPF in above

example are the same as the refinement coefficients (2.41)-(2.44) for Haar

wavelets. This is not just a coincidence and holds not only for Haar wave-

lets, but for any wavelet family satisfying biorthogonality conditions

(2.41)-(2.46). These conditions have a simple equivalent in digital domain

called perfect reconstruction conditions [6]. Consider system in Fig. 2.13

complemented by a similar setup performing inverse transform (Fig.

2.14).

The inverse transform filter bank consists of two upsamplers introducing

zero samples into the sequence and two reconstruction FIR filters. In

αk{ }
k 1=

N

H z( ) G z( )

2

2

2

2

x[k] y[k]

FIGURE 2.14. Perfect reconstruction filter bank.

H z( )

G z( )

H̃ z( )

G̃ z( )
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order for the output sequence y[k] to be identical to the input sequence

x[k] with only possible delay, the filter banks must satisfy two conditions:

No distortion condition: (2.70)

Alias cancellation condition: (2.71)

One can show [6] that filters banks with filter coefficients satisfying

(2.41)-(2.46) also satisfy these two conditions written in z domain. Such

filters are called Quadrature Mirror Filters (QMF).

For numerical methods, it is also convenient to be able to explicitly write

transform matrix T for (2.69). If we define filter coefficients for an arbi-

trary orthogonal wavelet family as and

, then one can write [9]:

(2.72)

H̃ z( )H z( ) G̃ z( )G z( )+ 2z
1–

=

H̃ z( )H z–( ) G z( )G̃ z–( )+ 0=
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T is a sparse matrix with block diagonal structure. Each subsequent

block has two rows representing and is shifted two columns to the

right due to the downsampling. It is clear that the cost of computing

(2.72) is O(N). Due to orthogonality, the inverse transform matrix is

obtained by transposing T:

(2.73)

In biorthogonal case, forward transform matrix is similar to (2.72)

(2.74)

and the backward transform matrix is given by

h

g

T 1– T
T

=

T̃

h̃0

g̃0

h1
˜
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g̃
M̃ 1–

0 0 0 0 …
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…
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g̃
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(2.75)

To complete wavelet decomposition by incorporating multilevel expan-

sion, we construct a filter bank that doesn’t stop after a couple of filters,

but follows the structure of a wavelet decomposition tree. In such a tree,

decomposition is performed successively by identical blocks shown in Fig.

2.13 each acting upon the a[k] sequence of the previous stage (Fig. 2.15).

T
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… … h1 g1
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0 hM 1– gM 1– h2 g2
…

0 0 … …
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=
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FIGURE 2.15. Wavelet decomposition tree.
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Let length of the input sequence be equal to N. The first stage produces

two vectors a3 and d3 each N/2 long. Total computational cost of this

stage is where is length of the decomposition filters (for orthogo-

nal wavelets just substitute for ). Vector a3 is further processed in

the second stage at the cost of (half the original because a3 is half the

length of x). Similarly, cost of the third and fourth stages is and

respectively. Total computational cost of computing the whole

decomposition thus becomes

(2.76)

This simple calculation has important consequences for the computa-

tional cost of wavelet-based algorithms: cost of the fundamental operation

of computing a FWT of an arbitrary vector is only O(N), versus O(NlogN)

for the FFT. Because of that, computational cost of wavelet algorithms is

bounded from below by only O(N).

2N M̃ M̃

M M̃

N M̃

N M̃ 2⁄

N M̃ 4⁄

C 2N M̃ N M̃ N M̃
2

----------
N M̃

4
----------+ + + O N( )= =
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3. STEADY STATE ANALYSIS OF

NONLINEAR CIRCUITS

3.1 PROBLEM BACKGROUND

Steady state analysis of nonlinear circuits represents one of the most

computationally challenging problems in EDA. Steady state analysis

implies that response of the circuit has to be found at times when all the

transients have sufficiently died out [16]. This immediately rules out time

marching schemes, especially for high bandwidth circuits, unless a good

solution for initial conditions can easily be obtained (shooting methods,

[17]). Direct frequency-domain methods are not applicable to the nonlin-

ear circuits either for obvious reasons.

Existing methods for steady state analysis of nonlinear circuits combine

both frequency domain and time domain analysis and are generally

known as the Harmonic Balance. The essence of this technique is to

replace the original Initial Value Problem with a Boundary Value Problem

with periodic boundary conditions and to solve the BVP in an appropriate

basis that ensures periodicity of the solution.

Harmonic Balance-like methods rely on fast and stable ways of solving

nonlinear algebraic equations as well as reasonably fast numerical tech-
www.manaraa.com
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Chapter 3: Steady state analysis of nonlinear circuits 44
niques for going back and forth between time and frequency domain. The

speed and accuracy of nonlinear methods primarily depend upon how

fast one can factorize the Jacobian matrix for the nonlinear equation.

In this section, we present a newly developed numerical method for

steady state analysis of nonlinear circuits. The method is somewhat simi-

lar in formulation to the traditional Harmonic Balance technique, but

uses wavelets instead of Fourier basis. The new bases allow to reduce

density of the Jacobian from a matrix with essentially dense blocks to

O(N) bandlimited matrix. The potential of this method leads to significant

improvement in computational cost and memory requirements as com-

pared to the traditional Harmonic Balance methods.

3.1.1 MATRIX FORMULATION IN GENERAL FORM

Consider a lumped component nonlinear circuit that is described by non-

linear Ordinary Differential Equations (ODEs) in time domain. Most often

these equations are written in the MNA formulation1 [18]:

(3.1)

Where C and G are matrices, x is a column vector of unknown cir-

cuit variables and u is a vector of independent sources.

1. State space formulation follows by assuming C to be identity matrix.

Cẋ Gx f x( ) u+ + + 0=

N x N x×
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For steady state analysis we must either assume that the circuit is under

periodic excitation, or that the circuit is autonomous and generates peri-

odic output. In both cases solution vector x is periodic with fundamental

frequency corresponding to period :

(3.2)

Equation (3.1) with boundary conditions (3.2) can be solved by expanding

nonlinear ODEs (3.1) into a nonlinear algebraic equation for the expan-

sion coefficients of x according to (2.29) and (2.33). In order for the solu-

tion to satisfy boundary conditions (3.2), expansion basis must satisfy

these boundary conditions as well. In other words, expansion basis must

be periodic. Let us assume that [xl] is a discrete vector containing values

of x sampled in time domain at time points [tl] and that we have a certain

periodic basis that has a pair of forward and inverse discrete

transforms associated with it:

, (3.3)

The nonlinear term can be represented in the following form:

(3.4)

Equation (3.1) then can be written in the transform domain as a nonlin-

ear matrix equation:

τ

x t τ+( ) x t( )=

vi{ } T T̃

X T xl[ ]= xl[ ] T̃ X=

F X( ) Tf T̃ X( )=
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(3.5)

Where , and are matrices. and are obtained from

C and G respectively by taking their tensor product with a identity

matrix.

We denote left side of (3.5) as  and write it as

(3.6)

Matrix D in (3.5)-(3.6) is projection of the derivative operator onto Mn

(2.34):

(3.7)

Solution of (3.6) is usually performed using Newton iterations. Assuming

as the initial guess for X, the linear matrix equation to be solved at

each step becomes

(3.8)

where is the solution of i-th iteration, is defined by (3.6) and

 is the Jacobian of :

, (3.9)

ĈDX ĜX F X( ) U+ + + 0=

Ĉ D Ĝ N tN x N tN x× Ĉ Ĝ

N t N t×

Φ X( )

Φ X( ) ĈD Ĝ+( )X F X( ) U+ + 0= =

td
d

Dij[ ] d
dt
-----vi v j,〈 〉=

X
0( )

J X
i( )( ) X

i 1+( )
X

i( )
–( ) Φ X

i( )( )–=

X
i( ) Φ X( )

J X( ) Φ X( )

J X( ) J kl X( )[ ]
X l∂

∂Φk= = k l, 1 … N tN x( ), ,=
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Substituting (3.6) into (3.9) and applying chain rule, we obtain the follow-

ing expression for computing the Jacobian [19]:

(3.10)

Jacobian is computed as a sum of three matrix components: , and

. Sparsity of the Jacobian becomes equal to the sparsity of the

most dense of these 3 components. Matrices and result from the

MNA formulation and typically have rather sparse structure. Matrix of

derivatives will have sparse structure only if chosen basis allows sparse

representation of the derivative operator, i.e. most of the elements in (3.7)

vanish. This naturally happens if have local support (local support

for basis means local support for it’s derivatives and therefore D becomes

a bandlimited matrix).

Sparsity of the third component in (3.10) depends primarily on the spar-

sity of the forward and inverse transform matrices T and as for

time-invariant systems is just a block matrix consisting of diagonal

blocks.

For simplicity, we will first consider a scalar case of (3.1) were both and

 matrices in (3.6) can safely be assumed as being diagonal.

J X( ) ĈD Ĝ T
xl∂

∂ f k T̃+ +=

ĈD G

T
xl∂

∂ f k T̃

Ĉ G

D

vi{ }

T̃
xl∂

∂ f k

Ĉ

Ĝ
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3.1.2 FOURIER BASIS: HARMONIC BALANCE FORMULATION

For many years now, Fourier basis has been the natural choice for solving

the steady-state analysis problem. Fourier basis for solution of (3.1) is

usually constructed on an interval that ensures periodicity of the solu-

tion, includes 2Nf+1 basis functions that have the base frequencies that

are multiples of the fundamental frequency in the circuit [16]:

(3.11)

Because complex exponents are natural eigenfunctions of the derivative

operator, derivative matrix D in this basis becomes a diagonal matrix in

real Schur form with base frequencies on the main diagonal:

(3.12)

The transform matrix T has dimensions of with Nt being the

number of time points and Nf being the number of frequencies. This

matrix has the following structure:

vi{ } 1 ωtcos ωtsin 2ωtcos 2ωtsin … N f ωtcos N f ωtsin, , , , , , ,{ }=

D ω

0 …
0 1 …
1– 0 …

0 2 …
2– 0 …

0 3 …
3– 0 …

… … … … … … … … … …
… 0 K

… K– 0

=

N t 2N f 1+( )×
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(3.13)

If

(3.14)

then T is a square matrix which is nonsingular with a proper choice of

time sampling points. If more restrictions are imposed on the time sam-

pling points1, T can also be made orthogonal:

(3.15)

This matrix clearly is dense which would suggest O(N2) operations for

computing Fourier coefficients in (3.3). This cost can be reduced to

O(NlogN) by applying Fast Fourier Transform (FFT) algorithm for comput-

ing the T and T-1 operators. However, Jacobian in (3.10) invariably

becomes a dense matrix which brings cost of solving (3.8) up to O(N3) at

each iteration. In order to reduce the cost of solving (3.10), one must

choose a different basis that provides sparse representation for both D

and T matrices.

1. Lengthy discussions of different algorithms for the selection of time sampling grid can
be found, for example, in [16] and [17] and are really beyond the scope of this thesis.

T

1 ωt0( )cos ωt0( )sin … N f ωt0( )cos N f ωt0( )sin

1 ωt1( )cos ωt1( )sin … N f ωt1( )cos N f ωt1( )sin

… … … … … …
1 ωtN t 1–( )cos ωtN t 1–( )sin … N f ωtN t 1–( )cos N f ωtN t 1–( )sin

=

N t 2N f 1+=

T̃ T
1–

T
T

= =
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3.2 WAVELET FORMULATION

Let us consider expansion of a scalar form of (3.1) in wavelet basis in a

similar way as traditional Fourier expansion described in Section 3.1.2.

3.2.1 BOUNDARY CONDITIONS

Let expansion basis be equal to one layer of scaling functions and

one layer of wavelets at level J such that :

(3.16)

Further, let us assume for simplicity that basis (3.16) is defined on an

interval (0, 1) and equation (3.1) is scaled accordingly such that period of

the fundamental frequency in the circuit is also equal to 1. To satisfy the

boundary condition of we must construct the wavelets in

such a way that truncated on an interval basis becomes periodic. Such

construction can be easily performed when truncated part of the wavelet

(or scaling function for that matter) is not discarded, but appears on the

other boundary of the interval (Fig. 3.1).

Periodic basis constructed in such a way naturally enforces periodicity of

the solution while retaining all of the properties of wavelets described in

Section 2.4.

vi{ }

2
J

N f=

vi{ }
i 1=

2N f ψi J, ϕ i J,,{ }
i 0=

N f 1–
=

x 0( ) x 1( )=
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FIGURE 3.1. Periodic wavelet basis on an interval.
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3.2.2 TRANSFORM MATRIX

Periodic wavelet basis on an interval (Fig. 3.1) gives rise to a bandlimited

transform matrix T that can be obtained from a non-periodic matrix (2.75)

by introduction of the “truncated” QMF coefficients into upper right (and,

if necessarily, lower left) corners:

(3.17)

T

h0 g0
0 0 … h2 g2

h1 g1
0 0 … … …

h2 g2 h0 g0
0 … hM 2– gM 2–

… … h1 g1
0 … hM 1– gM 1–

hM 1– gM 1– h2 g2 h0 g0
… 0

0 … … h1 g1
… 0

0 hM 1– gM 1– h2 g2
… 0

0 0 … … … 0

0 0 hM 1– gM 1– … 0

… … … … …
0 0 0 … 0

0 0 0 … 0

0 0 0 … h0 g0

0 0 0 … h1 g1

=
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Lower left corner coefficients will appear if the QMF taps are aligned

around the center of the h vector such that h0 always appears on the

main diagonal [8].

For orthogonal wavelets, inverse transform matrix is obtained from (3.17)

via (3.15). For biorthogonal wavelets, is constructed by augmenting

(2.74) in a way similar to described above.

An example of the sparsity pattern for the periodized transform

matrix constructed with orthogonal Daubechies wavelets with 8 filter

coefficients can be observed in Fig. 3.2. Filter coefficients are aligned in

the following way: .

This figure clearly illustrates that for local support wavelets generated by

FIR filters, transform matrix remains bandlimited (to a permutation) even

in periodic case. With each column containing M nonzero entries, total

number of nonzero elements in transform matrix is (see

also page 42) or O(N). This is already an improvement over traditional

Fourier basis which generates a dense transform matrix.

Furthermore, because of the sparsity of the transform matrix and it’s

band structure, component of (3.10) is also a sparse bandlim-

ited matrix with O(N) nonzero entries (Fig. 3.3).

We will proceed with derivation of the D matrix in wavelet basis to deter-

mine the overall sparsity pattern of Jacobian.

T̃

64 64×

h h 4– h 3– h 2– h 1– h0 h1 h2 h3, , , , , , ,[ ]=

NNZ 2MN f=

T
xl∂

∂ f k T̃
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3.2.3 CONNECTION COEFFICIENTS

Derivative matrix D (3.7) contains 4 types of coefficients produced by dis-

cretization of derivative operator in wavelet basis (3.16) [20]:

(3.18)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 512

FIGURE 3.2. Sparsity pattern for the periodized transform matrix.

α l ψ t
τ
--

l
N t
------– 

 
t∂

∂ ψ t
τ
-- 

 ,〈 〉=
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(3.19)

(3.20)

(3.21)

where .

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 384

FIGURE 3.3. Sparsity pattern for the  component of Jacobian
expanded in a basis of periodic orthogonal Daubechies wavelets of order 2.

T f x∂⁄∂( )T̃

βl ψ t
τ
--

l
N t
------– 

 
t∂

∂ ϕ t
τ
-- 

 ,〈 〉=

γl ϕ t
τ
--

l
N t
------– 

 
t∂

∂ ψ t
τ
-- 

 ,〈 〉=

rl ϕ t
τ
--

l
N t
------– 

 
t∂

∂ ϕ t
τ
-- 

 ,〈 〉=

l 0 … N t 1–, ,=
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These coefficients obtained by expansion of the derivative operator in a

wavelet basis are often called connection coefficients.

By substituting (3.18)-(3.21) into the refinement equations (2.41)-(2.44)

one can show ([8],[20]) that

(3.22)

(3.23)

(3.24)

Therefore, representation of derivative operator in wavelet basis is com-

pletely determined by connection coefficients (3.21) obtained from scaling

functions only, or in other words, projection the derivative operator on

subspace  is completely determined by projection on .

For compactly supported (bi)orthogonal wavelets, is an anti symmet-

ric vector with following properties:

 only for (3.25)

(3.26)

(3.27)

α i 2 g̃k gk'r2i k k'–+
k'( )
∑

k( )
∑=

βi 2 g̃khk'r2i k k'–+
k'( )
∑

k( )
∑=

γi 2 h̃k gk'r2i k k'–+
k'( )
∑

k( )
∑=

V J V 0

rm{ }

rm 0≠ M– 2 m M 2–≤ ≤+

r0 0=

r m– rm–=
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(3.28)

and, most important:

(3.29)

where ai are autocorrelation coefficients of the low pass QMFs:

, (3.30)

which can be computed with high precision using the following relation-

ships for a wavelet with L vanishing moments [20]:

, (3.31)

where

(3.32)

Only odd autocorrelation coefficients have nonzero values. Even coeffi-

cients are all equal to zero.

We have to note here that not only ai are rational numbers by construc-

tion, but they only depend on the number of vanishing moments for a

mrm
m( )
∑ 1–=

rm 2 r2m
1

2
--- a2k 1– r2m 2k– 1+ r2m 2k 1–++( )
k 1=

M 2⁄

∑+=

ai 2 h̃mhm i+
m 0=

M i– 1–

∑= i 1 … M 1–, ,=

a2l 1–

1–( )l 1–
CL

L l–( )! L l 1–+( )! 2l 1–( )
-----------------------------------------------------------------= l 1 … L, ,=

CL
2L 1–( )!

L 1–( )!4
L 1–

-------------------------------- 
  2

=
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particular element and not on the QMF coefficients themselves. There-

fore, they can be the same for different wavelets with the same number of

vanishing moment.

Linear algebraic system formed by (3.25)-(3.29) is ill conditioned and it’s

numerical solution is unstable. Fortunately, since the coefficient of this

system are rational numbers, it can be solved symbolically. Consequently,

basic connection coefficients rm are also rational numbers by construc-

tion and can be computed with any required degree of accuracy.

Connection coefficients for L=1...8 computed according to (3.25)-(3.32)

are given in Tables 3.1 and 3.2. It is interesting to observe that for L=1

(Haar wavelets) connection coefficients are equivalent to a well known

finite difference discretization scheme. Higher order discretization

schemes correspond to wavelets with more vanishing moment.

Matlab code for computing  can be found in Appendix A..

TABLE 3.1. Connection coefficients rm for orthogonal wavelets
with L=1...5 vanishing moments.

m L=1 L=2 L=3 L=4 L=5

0 0 0 0 0 0

1 -1/2 -2/3 -272/365 -39296/49553 -957310976/1159104017

2 1/12 53/365 76113/396424 265226398/1159104017

3 -16/1095 -1664/49553 -735232/13780629

4 -1/2920 2645/1189272 17297069/2318208034

5 128/743295 -1386496/5795520085

6 -1/1189272 -563818/10431936153

7 -2048/8113728119

8 -5/18545664272

rm
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3.2.4 DERIVATIVE MATRIX

Having obtained connection coefficients for the expansion of derivative

operator in basis of scaling functions (3.21), we can now construct deriva-

tive matrix D for (3.7).

We start with constructing matrix R which is projection of the derivative

operator onto subspace spanned by scaling functions. Because scaling

functions, as well as wavelets, have local support, R is a bandlimited

TABLE 3.2. Connection coefficients rm for orthogonal wavelets
with L=6...8 vanishing moments.

m L=6 L=7 L=8

0 0 0 0

1 -3986930636128256/
4689752620280145

-34141691312970913517142016/
39300063853302507072666225

-15307411742024122608047464906752/
17326934462787065887255134938813

2 4850197389074509/
18759010481120580

3706848761045042521568797/
13100021284434169024222075

84072878532195990258950029270329/
277230951404593054196082159021008

3 -1019185340268544/
14069257860840435

-1181478687077054472781824/
13100021284434169024222075

-5528889721339826844157784096768/
51980803388361197661765404816439

4 136429697045009/
9379505240560290

14265867224679607007907577/
628801021652840113162659600

8674597455129477747923023172169/
277230951404593054196082159021008

5 -7449960660992/
4689752620280145

-152541415888643207462912/
39300063853302507072666225

-602836894589837888264488353792/
86634672313935329436275674694065

6 483632604097/
112554062886723480

1767685682356115678983/
5240008513773667609688830

857916307369972797746047650035/
831692854213779162588246477063024

7 78962327552/
6565653668392203

233086814008971624448/
55020089394623509901732715

-1328578550813659870682677248/
17326934462787065887255134938813

8 31567002859/
75036041924482320

-345875758226176733651/
209600340550946704387553200

-67976810578396425327419253/
277230951404593054196082159021008

9 -2719744/
937950524056029

-25786104557650313216/
117900191559907521217998675

-6228044283147844191256576/
155942410165083592985296214449317

10 1743/
2501201397482744

32878864308626027/
78600127706605014145332450

99913317392947272157417209/
1386154757022965270980410795105040

11 -5202857403613184/
432300702386327577799328475

184824736448048598614016/
190596279090657724759806484326943

12 -138931281377/
209600340550946704387553200

603160866987014936359/
831692854213779162588246477063024

13 -2793278738075222016/
225250148016231856534316754204569

14 43953990152589/
277230951404593054196082159021008
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Toeplitz matrix with it’s diagonals filled by [8]. To extend this construc-

tion for periodized wavelets, we need to populate the upper left and lower

right corners of the matrix as well [21].

Fig. 3.4 illustrates structure for the derivative matrix R constructed with

periodized Daubechies wavelets of third order (6 filter coefficients). From

here, matrix D can be easily obtained using (3.22)-(3.24). These equations

describe convolution of the derivative filter with QMFs, which is equiva-

rm
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FIGURE 3.4. Derivative matrix R for periodized wavelets.
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lent to taking a 2-dimensional wavelet transform. In matrix form, we can

write it as

(3.33)

where and are forward and inverse transform matrices. Sparsity

structure of the matrix D will depend on the sparsity structure of trans-

form matrices, which in it’s turn depend on the ordering of basis func-

tions. The traditional way (first introduced in [20]) is to place scaling

functions first and then wavelets:

(3.34)

This will generate matrix D that has four bandlimited quadrants popu-

lated by , , and as defined in (3.18)-(3.21) (Fig. 3.5). This is conve-

nient for generating representation of the derivative operator in so called

non-standard form [8], however such matrix has rather high bandwidth.

We can reduce the bandwidth of matrix D by reordering the basis in such

a way, that each scaling function is followed by the overlapping wavelet:

(3.35)

Transform matrices defined by (3.17) in fact correspond to such bases.

Because both and in this case are bandlimited matrices, as well as

D TRT̃=

T T̃

vi{ }
i 1=

2N f ϕ0 J, … ϕ, , N f 1– J, ψ;
0 J,

… ψN f 1– J,, ,{ }=

α β γ r

vi{ }
i 1=

2N f ϕ0 J, ψ0 J, … ϕ, , , N f 1– J, ψN f 1– J,,{ }=

T T̃
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, resulting matrix D is also a bandlimited matrix with O(N) nonzero

entries (Fig. 3.6).

Refer back to the Jacobian in equation (3.10). We have established that

wavelet expansion leads to construction of sparse bandlimited matrices

for all components of the Jacobian. Even though derivative matrix in

wavelet basis is not diagonal (as in case of Fourier basis), it has only O(N)

α

α

r

r

β

α

β

β

γ

γ

γ

r

ψ ϕ

ψ

ϕ

FIGURE 3.5. Structure of matrix D obtained in wavelet basis ordered according
to (3.34).
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nonzero entries. Together with sparse, O(N) transform matrix, this results

in sparse Jacobian in equation (3.8).

3.3 ANALYSIS OF COMPUTATIONAL COMPLEXITY

We use two computational cost metrics: number of nonzero elements in

the Jacobian matrix and net CPU time required for one LU decomposition
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60

nz = 1152

FIGURE 3.6. Sparsity pattern for the 64x64 derivative matrix D constructed in
basis of order 3 periodized Daubechies wavelets.
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and Forward/Backward substitution of the Jacobian. The former is inde-

pendent of all the platform and implementation issues, is a dominating

factor for both memory storage and CPU requirements and provides a

good measure of computational resources required to perform the simula-

tion. The latter is highly dependent on the software and hardware imple-

mentation of the simulator, but given pretty much state of the art in both,

dominates the CPU cost of a Newton’s iteration and provides a real world

estimate of the CPU time required for the solution. In this section we will

derive analytical estimates for the first metric, while reliable data for the

second metric can be obtained only experimentally and will be presented

in section 3.4.

3.3.1 HARMONIC BALANCE FORMULATION

Let us consider equation (3.1) in scalar form. Provided square Fourier

transform is used, and matrices in (3.3) are square and dense. Jaco-

bian (3.10) also becomes a dense matrix because of the com-

ponent. If we denote order of expansion as , Jacobian is a dense

matrix that has nonzero elements.

Let is generalize this to a vector case. Matrices in (3.6) and (3.10) obtain a

block structure with each nonzero block corresponding to one

nonzero entry in circuit equation matrices (3.1). These nonzero blocks

have elements for every nonzero entry in matrices C and G and

elements for every nonzero entry in . Density of Jacobian

T T̃

T f x∂⁄∂( )T̃

N t N t N t×

O N t
2( )

N t N t×

O N t( )

O N t
2( ) f k xl∂⁄∂[ ]
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(3.10) in this case is dominated by these dense blocks corresponding to

nonlinear elements in the circuit. Only the size of these blocks changes

with the order of expansion. Overall density of the Jacobian in this case is

, where  is constant for a given circuit and therefore

(3.36)

like in scalar case. In it’s turn, order of expansion is linearly proportional

to the number of frequencies in truncated set:

(3.37)

with 1 accounting for the DC component.

Number of frequencies in truncated set is a critical point for computa-

tional cost analysis.

3.3.2 SPECTRUM TRUNCATION ISSUES

Let us denote the highest order of intermodulation products retained in

simulation as NH. Equation (3.11) describes frequency set useful only for

analysis of circuits excited by a single tone. For multitone analysis, the

set should include harmonics of all the tones as well as all relevant

intermodulation products:

(3.38)

NNZ O κ N⋅ t
2( )≅ κ

NNZ O N t
2( )≅

N t 2N f 1+=

Ω

Ω ω ω ksωs
s 1=

S

∑ ks Z∈;=
 
 
 

=
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This set is infinite. In order to make the problem computationally solv-

able, we must truncate this set to one that provides an approximate solu-

tion. Truncation schemes are the principal source of errors in steady

state analysis, primarily due to the aliasing of truncated components [17].

The simplest truncation scheme (we will refer to it as trivial truncation)

assumes that all in (3.38) are commensurate with a single fundamen-

tal frequency . Trivial truncation then generates an equidistant fre-

quency grid spanning all the frequencies from 0 to NH-th harmonic of the

highest frequency in . For example, if tone frequencies are equal to 900

and 910 MHz and NH = 10, the set will span frequencies from 0 to 9100

MHz with step  = 10 MHz. If we denote density of the grid as

(3.39)

then trivial truncation produces a grid that has

(3.40)

frequency components. Together with (3.36) and (3.37) this results in the

following computational complexity estimation for HB formulation with

trivial truncation:

(3.41)

ωs

∆ω

ωs

∆ω

∆ω̂ ∆ω
max ωs{ }
-----------------------=

N f O
NH

∆ω̂
-------- 

 ≅

NNZ O
NH

∆ω̂
-------- 

 
2

≅
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This effectively renders trivial truncation to be unsuitable for all but the

simplest and smallest cases.

Another truncation strategy is aimed to retain in only the frequencies

which carry intermodulation components with orders up to NH. This

strategy gives rise to box

(3.42)

and diamond

; ; (3.43)

truncation schemes.

In general case, for multitone analysis with S tones and box or diamond

truncation, number of frequencies in truncated set is proportional to the

volume of a cube in S-dimensional space ([16], p.245):

(3.44)

However, for a practically interesting case of periodic analysis when all

are commensurate with a single fundamental frequency , Nf grows

slower than (3.44) because with increase in NH frequencies of the new IM

products often coincide with already existing in the set. Particularly, if
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tone frequencies in are evenly spaced (e.g. 900, 910, 920, ... MHz), set

size grows only as

(3.45)

Combining (3.36), (3.37) and (3.45), we conclude that for multitone Har-

monic Balance computational cost in terms of the number of nonzero ele-

ments in Jacobian is equal to

(3.46)

Computational cost in terms of CPU time will actually be slightly higher

and also depend on the size and density of the circuit equation (3.1).

3.3.3 WAVELET FORMULATION

Similarly to Harmonic Balance expansion, estimations given in Section

3.2 for wavelet expansion can be generalized to include circuit equations

(3.1), where each nonzero element after expansion becomes an

sparse block, each having nonzero entries (see Fig. 3.3 and Fig.

3.6). Total number of nonzero entries in wavelet Jacobian becomes

(3.47)

with

(3.48)

ωs

N f O S N⋅ H
2( )≅

NNZ O NH
4( )≅

N t N t×

O Nt( )

NNZ O N t( )≅

N t 2N f=
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because of the sampling theorem.

With wavelets we use trivial truncation that produces an equidistant uni-

form frequency grid spanning harmonics and IM components up to

required NH. This, however, is quite a beneficial trade-off as this scheme

produces frequency grid with

(3.49)

components, where is the relative density if the frequency grid (e.g. for

base frequencies 99 and 100 MHz = 1%). Combining (3.47)-(3.49) we

conclude that computational cost of wavelet expansion is

(3.50)

and despite the primitive truncation schemes, with increase in NH and S

wavelet methods very quickly gain significant advantages in computa-

tional cost.

Comparison of relative computational complexity is shown in Fig. 3.7.

This plot was produced for a scalar case with multitone excitation and

closely spaced commensurate tone frequencies (e.g. 1000, 990, 980, 970

MHz, .... for  = 1%).

This plot produces some interesting observations. First, computational

complexity of Harmonic Balance with diamond truncation does not

N f O
NH

∆ω̂
-------- 

 =

∆ω̂

∆ω̂

NNZ O NH( )=

∆ω̂
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depend on the density of frequency grid. This is quite understandable in

view of the fact that Fourier series is a frequency localized basis. Good fre-

quency localization is what makes possible sophisticated truncation

schemes in frequency domain. However, this also causes computational

cost to be and also to depend on the number of tones. Sec-

ond, computational cost of wavelet formulation with trivial truncation

perfectly follows (3.49) and despite the fact that it depends on the density

of frequency grid, it does not depend on the number of tones as long as

the newly introduced tones fall into the same grid produced by trivial
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FIGURE 3.7. Comparison of computational complexity in terms of the number
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truncation. This is also quite understandable if we consider the fact that

wavelet transform used in the formulation can be represented by a single

level filter bank represented in Fig. 2.14. Note, that for (bi)orthogonal

wavelets power frequency response of the filter bank satisfies the no dis-

tortion condition (2.70), which essentially means that the transform cov-

ers all frequency range split into two bands (Fig. 3.8). By comparison, a

filter bank associated with Fourier transform has frequency response of a

collection of narrowband filters. With trivial truncation, combined fre-

quency response covers the whole frequency range, however, with box or

diamond truncation only selected frequencies in the range are covered

and introduction of new tones or higher order intermodulation products

leads to substantial growth in the number of basis functions (3.45) and,

consequently, in computational cost of the solution.

3.4 NUMERICAL RESULTS

All simulations described in this section were performed in Matlab 6.5.0

(R13), running on a SUN Blade-1000 workstation with 900 MHz UltraS-

PARC-III CPU, 8 MB L2 cache and 5 GB of physical RAM.

Because Matlab environment uses interpreted programming language

[28], CPU time was recorded only for the time required to solve the Jaco-

bian matrix (averaged over several Newton’s iterations). Recording total

simulation time would include all the overhead associated with the inter-
www.manaraa.com
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preter and possibly other implementation issues and would produce con-

taminated and therefore misleading results. Matlab 6.x sparse matrix

solver relies on the UMFPACK package ([29], [30]). Matlab’s left matrix

division operator was used to invoke the matrix solver, which in this case

performs LU decomposition using Gaussian elimination with partial piv-

oting algorithm. By default, the solver performs column approximate min-

imum degree preordering before performing Gaussian elimination. It was

established that explicit utilization of other preordering algorithms is

extremely beneficial for the steady state analysis problems. Symmetric

approximate minimum degree (SAMD) preordering was used for Jacobi-

ans arising from the Fourier series expansion, while for the wavelet

expansion it appeared to be possible to use symmetric reverse Cuthill-

McKee (SRCM) preordering ([29]).

In both examples diamond truncation was used for Harmonic Balance

and trivial truncation for wavelet expansion.

All the results of wavelet expansion presented in this section were

obtained with Daubechies wavelets of second order. Some experiments

were also performed with Haar wavelets and higher orders of Daubechies

wavelets. Haar expansion produced poor results in both accuracy and

convergency, while higher order Daubechies wavelets produced essen-

tially the same accuracy and convergence as the second order, but at a

slightly higher computational cost.
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3.4.1 CASE STUDY: CASCODE LNA

A 900 MHz cascode LNA was considered in the first example. The ampli-

fier (Fig. 3.9) consists of 2 BJTs with DC bias and impedance matching

networks. A simple Ebers-Moll injection model (Fig. 3.10) was used for

both BJTs. Even though this model probably is not accurate at the higher

range of simulated frequencies, the goal of this experiment is to validate

wavelet formulation, so as long as the same model is used for both Har-

monic Balance and wavelet method, analysis results should match.
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FIGURE 3.10. Ebers-Moll injection model for BJTs.
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Under all these assumptions, total size of MNA equations in this example

was 25.

The first experiment is a 900 MHz single tone simulation, which is rou-

tinely performed during design stage of such amplifiers to determine gain

and 3dB compression point. Up to the 16-th order intermodulation prod-

ucts had to be retained for this simulation to ensure convergence and

accuracy. Output power delivered to the load at first (900 MHz), second

Vrf
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0.1nH
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1kΩ
100pF

600Ω

100pF

29.3nH

0.69pF
50Ω

+ −

Vcc=3V

Q=10

FIGURE 3.9. Cascode LNA circuit.
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(1800 MHz) and third (2700 MHz) harmonics versus the input power is

plotted in Fig. 3.11. Both methods are in excellent agreement with each

other and with simulations performed independently in [27]. Both meth-

ods also exhibited essentially the same convergence and computational

cost, which is understandable given the small size of the problem (Jaco-

bian size was with 16,470 nonzero entries for Fourier series and

 with 10,827 nonzero entries for wavelets).
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FIGURE 3.11. Single tone input simulation results for the cascode LNA in Fig.
3.9.
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Second experiment involves the same circuit under multitone excitation,

with two tone input signals of the same power and frequencies of 900 and

910 MHz. Purpose of this experiment is to validate speed and accuracy of

the wavelet expansion on computations of the third order in-band inter-

modulation products at 920 and 930 MHz. Simulation results are shown

in Fig. 3.12 and are in excellent correspondence with each other. In each

case (HB and wavelets) intermodulation products were computed with NH

ranging from 5 to 22 (maximum value for HB given software implementa-

−55 −50 −45 −40 −35 −30 −25 −20
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

900 MHz input power, dBm

O
u
tp

u
t 

p
o
w

e
r,

 d
B

m

Two tone input, 900+910 MHz

Harmonic Balance
Wavelets

910 MHz 

920 MHz 

930 MHz 
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tion and available memory). To compare computational complexity of both

methods, number of nonzero elements in the Jacobian and average time

for one LU decomposition was recorded and is shown as a function of NH

in Fig. 3.13 and Fig. 3.14 respectively. Detailed data for NH = 6, 12, 18

and 22 can be also found in tables 3.3-3.6.

TABLE 3.3. Computational cost comparison for cascode LNA (Fig.
3.9) at NH = 6.

Harmonic
Balance Wavelets

Frequency grid size 43 556

Time grid size 85 1,112

Jacobian size

Number of nonzero elements 114,219 386,976

Sparsity ratio 2.5% 0.05%

Memory storage size, MBytes 1.35 4.6

Average CPU time for preordering, seconds 0.17 0.26

Average time per LU/FBS, seconds 1.8 7.7

Number of Newton iterations 5 5

TABLE 3.4. Computational cost comparison for cascode LNA (Fig.
3.9) at NH = 12.

Harmonic
Balance Wavelets

Frequency grid size 157 1,102

Time grid size 313 2,204

Jacobian size

Number of nonzero elements 1,489,284 747,174

Sparsity ratio 2.4% 0.025%

Memory storage size, MBytes 17.5 9.4

Average CPU time for preordering, seconds 2.5 0.5

Average time per LU/FBS, seconds 70 15

Number of Newton iterations 5 5

2125 2125× 27800 27800×

7825 7825× 55100 55100×
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TABLE 3.5. Computational cost comparison for cascode LNA (Fig.
3.9) at NH = 18.

Harmonic
Balance Wavelets

Frequency grid size 343 1,648

Time grid size 685 3,296

Jacobian size

Number of nonzero elements 7,085,619 1,176,654

Sparsity ratio 2.4% 0.017%

Memory storage size, MBytes 83.1 14.8

Average CPU time for preordering, seconds 77 0.8

Average time per LU/FBS, seconds 840 22

Number of Newton iterations 5 5
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FIGURE 3.13. Number of nonzero elements in Jacobian for the cascode LNA in
Fig. 3.9.
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TABLE 3.6. Computational cost comparison for cascode LNA (Fig.
3.9) at NH = 22.

Harmonic
Balance Wavelets

Frequency grid size 507 2,012

Time grid size 1,013 4,024

Jacobian size

Number of nonzero elements 15,462,403 1,400,370

Sparsity ratio 2.4% 0.014%

Memory storage size, MBytes 181.3 17.6

Average CPU time for preordering, seconds 278 1.0

Average time per LU/FBS, seconds 2,980 28

Number of Newton iterations 5 5
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As can be seen from Figures 3.13 and 3.14, experimental data for the

comparison of computational cost follows the trends predicted by analysis

performed in Section 3.3 (Fig. 3.7). Even though trivial truncation results

in a large matrix size for wavelet expansion, these matrices are extremely

sparse and wavelet method becomes computationally more favourable for

. The trend of derived in (3.46) is just too powerful and

quickly overcomes linear cost of wavelet expansion. CPU time rises even a

bit faster than that, which is understandable in view of the computational

complexity of the Gaussian elimination for large scale sparse matrices

arising from MNA equations ([18]) being where is

a parameter which depends on sparsity ratio of the matrix .

Both Fourier series and wavelet expansions produce Jacobian with spar-

sity pattern similar to the original MNA equation except for the fact that

with the Fourier series blocks corresponding to nonlinear elements are

dense matrices. Because of this, sparsity ratio of HB Jacobian stays

essentially the same with increase in NH (2.4% in this example), while

sparsity ratio of the wavelet Jacobian decreases as thus com-

pensating for the increased matrix size. In fact, this compensation allows

the CPU time metric to stay even when using a general purpose

matrix solver.

An example of the sparsity pattern for Jacobian arising from Fourier

series expansion is shown in Fig. 3.15. Note the dense blocks correspond-

NH 10≥ O NH
4( )

O N t N x×( )1 α+( ) 0 α< 1«

NNZ N tN x( )⁄ 2

O 1 NH⁄( )

O NH( )
www.manaraa.com



Chapter 3: Steady state analysis of nonlinear circuits 82
ing to the nonlinear elements are dominating the nonzero element count.

These blocks account for 98.5% of nonzero elements, thus also dominat-

ing computational cost in terms of CPU time.

Fig. 3.16 show sparsity pattern of this Jacobian after SAMD reordering.

By comparison, Fig. 3.17 shows the sparsity pattern obtained after SRCM

reordering. RCM algorithm tries to find a reordering that produces a

FIGURE 3.15. Sparsity pattern for the Jacobian arising from Fourier series
expansion for cascode LNA in Fig. 3.9 with NH = 12. Dense blocks account for
98.5% of nonzero elements.
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bandlimited structure. As could be expected, SRCM reordering in this

case performs quite poorly because of the dense blocks in the sparsity

pattern of the original Jacobian. The resulting matrix structure in Fig.

3.17 has fairly high bandwidth, while it is known ([29]) that the band

experiences significant fill-in during LU decomposition (Fig. 3.18), leading

to high memory and CPU time requirements. On the other hand, mini-

mum degree algorithms try to find such reordering that it would produce

a structure with large blocks of contiguous zeros which do not fill in dur-

ing factorization (Fig. 3.19).

FIGURE 3.16. Jacobian in Fig. 3.15 after symmetric approximate minimum
degree reordering.
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FIGURE 3.17. Jacobian in Fig. 3.15 after symmetric reverse Cuthill-McKee
reordering.

FIGURE 3.18. Sparsity pattern of the LU factors for SAMD-reordered HB
Jacobian (Fig. 3.16).
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Compare this to the sparsity patterns of the Jacobian obtained from

wavelet expansion (Figures 3.20-3.23). Jacobian (Fig. 3.20) has sparse

bandlimited blocks in place of dense blocks in the HB Jacobian (Fig.

3.15). Size of the wavelet Jacobian is much larger, because both were

obtained with NH = 12 and wavelet expansion with trivial truncation uti-

lizes larger frequency grid. However, SRCM reordering works extremely

well for such matrices and produces an extremely narrowband matrix

(Fig. 3.22). Theoretical computational cost for solving narrowband matri-

ces ([32], pp. 149-153) is O(N), or more precisely floating point

operations, where p and q are the bandwidths of the upper and lower tri-

angles respectively. For and this results in compu-

FIGURE 3.19. Sparsity pattern of the LU factors for SRCM-reordered HB
Jacobian (Fig. 3.17). Note significant fill-ins within the band that result in
almost 2-fold increase in the nonzero elements count (as compared to SAMD in
Fig. 3.18).

O Npq( )

N 55100= p q 200≈=
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tational complexity of approximately 2.2 Gflops. With the computer rated

at approximately 700 Mflops/s on dense matrix computations (see

Appendix A.3) and a customized bandlimited matrix solver, theoretically

we could achieve CPU time of several seconds. Recall (Table 3.4) that

solution of this matrix required only 15 seconds of CPU time with a gen-

eral purpose matrix solver and all the overhead associated with sparse

matrix storage. This illustrates the point that a well-engineered general

purpose matrix solver can provide performance that rivals that of the

solvers custom tailored for a specific problem.

FIGURE 3.21. Jacobian in Fig. 3.20 after symmetric approximate minimum
degree reordering.
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FIGURE 3.20. Sparsity pattern for the Jacobian arising from wavelet expansion
for cascode LNA in Fig. 3.9 with NH = 12.
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FIGURE 3.23. In-band sparsity pattern of the LU factors for SRCM-reordered
wavelet Jacobian (Fig. 3.22).
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3.4.2 CASE STUDY: GILBERT CELL MIXER

The second example involves a BJT Gilbert cell mixer circuit that consists

of 9 transistors (including 3 as current sources), DC bias and impedance

matching networks (Fig. 3.24). BJTs are represented by Ebers-Moll injec-

tion models (Fig. 3.10). Transformers are assumed to be ideal 1:1 convert-

ers. Under these assumptions total size of the MNA equations (3.1) is

equal to 37.

50

1.7V

5.8pF

3V

N1

22.1n

13.8n

200

580

6.17p

1200

36

50

580

3636

200

200

0.82p

100

100

375n

100

50

200

Vlo
1.2V

Vrf

3V

− +

− +

−

+

− ++−

+−

+−

FIGURE 3.24. Gilbert cell mixer circuit
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The mixer was configured for down conversion with LO input at 1 GHz,

RF input at 900 MHz and IF output at 100 MHz. Inputs and output were

matched to 50 Ohms active impedance at their respective frequencies.

The first experiment is a single tone LO input power sweep simulation

often performed to estimate mixer operational point for LO bias. Results

of the simulation (magnitude of second harmonic of voltage at node N1)

are shown in Fig. 3.25. As was previously observed for single tone simula-

tions, both HB and wavelet expansion exhibited essentially the same

behaviour in terms of accuracy and convergence.
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FIGURE 3.25. Single tone LO input power sweep for Gilbert cell mixer circuit in
Fig. 3.24.
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For the second experiment input LO power was kept constant at +1 dBm,

while performing RF input power sweep. IF output power response for

this simulation is shown in Fig. 3.26. Fig. 3.27 also illustrates conver-

gence of the Newton iterations from DC solution to operation point PLO =

+1 dBm, PRF = -33 dBm with NH = 9. As can be seen from both plots, both

HB and wavelet expansion exhibit essentially the same behaviour in

terms of both accuracy and speed of convergence.
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Comparison of the computational cost of the two methods in terms of the

number of nonzero elements in the Jacobian and average time per LU

decomposition is shown in Figs. 3.28 and 3.29 respectively. Both are in

good agreement with the computational cost analysis performed in sec-

tion 3.3. Because of the circuit configuration frequency grid density in

this case is 10% ( is 100 MHz with 900 and 1000 MHz fundamental

frequencies), which means that for diamond truncation frequency

grid becomes “saturated” and diamond truncation degenerates into trivial

truncation with  and .
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FIGURE 3.28. Number of nonzero elements in the Jacobian for Gilbert cell mixer
in Fig. 3.24.
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Detailed computational cost data for NH = 6, 9, 12 and 22 can also be

found in tables 3.7-3.10.

TABLE 3.7. Computational cost comparison for Gilbert cell mixer
(Fig. 3.24) at NH = 6.

Harmonic
Balance Wavelets

Frequency grid size 43 61

Time grid size 85 122

Jacobian size

Number of nonzero elements 480,135 121,695

Sparsity ratio 1.2% 0.15%

Memory storage size, MBytes 5.7 1.5

Average CPU time for preordering, seconds 0.66 0.07

Average time per LU/FBS, seconds 25.4 5.4

Number of Newton iterations 8 8

TABLE 3.8. Computational cost comparison for Gilbert cell mixer
(Fig. 3.24) at NH = 9.

Harmonic
Balance Wavelets

Frequency grid size 91 91

Time grid size 181 182

Jacobian size

Number of nonzero elements 2,134,819 185,016

Sparsity ratio 1.2% 0.1%

Memory storage size, MBytes 25.1 2.3

Average CPU time for preordering, seconds 4.5 3.4

Average time per LU/FBS, seconds 185 8.2

Number of Newton iterations 8 8

6290 6290× 9028 9028×

13394 13394× 13468 13468×
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Sparsity patterns for HB Jacobian, it’s SAMD and SRCM reorderings and

their LU factors are shown in Figs. 3.30-3.34 and the same for wavelet

Jacobian in Figs. 3.35-3.38. This corroborates observation made in the

previous section for cascode LNA that SRCM performs extremely well on

wavelet Jacobians, while HB Jacobians represent quite a problem for

both with MD algorithm providing better results.

TABLE 3.9. Computational cost comparison for Gilbert cell mixer
(Fig. 3.24) at NH = 12.

Harmonic
Balance Wavelets

Frequency grid size 121 121

Time grid size 241 242

Jacobian size

Number of nonzero elements 3,767,955 241,356

Sparsity ratio 1.2% 0.075%

Memory storage size, MBytes 44.2 3.1

Average CPU time for preordering, seconds 9.4 5.6

Average time per LU/FBS, seconds 440 11

Number of Newton iterations 8 8

TABLE 3.10. Computational cost comparison for Gilbert cell mixer
(Fig. 3.24) at NH = 22.

Harmonic
Balance Wavelets

Frequency grid size 221 221

Time grid size 441 442

Jacobian size

Number of nonzero elements 12,539,661 449,475

Sparsity ratio 1.2% 0.042%

Memory storage size, MBytes 147.2 5.7

Average CPU time for preordering, seconds 48 17

Average time per LU/FBS, seconds 2,720 20

Number of Newton iterations 8 8

17834 17834× 17908 17908×

32634 32634× 32708 32708×
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FIGURE 3.30. Sparsity pattern for the Jacobian arising from Fourier series
expansion for Gilbert cell mixer in Fig. 3.24 with NH=9. Dense blocks account for
98.2% of nonzero elements.
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FIGURE 3.31. Jacobian in Fig. 3.30 after symmetric approximate minimum
degree reordering.

FIGURE 3.32. Jacobian in Fig. 3.30 after symmetric reverse Cuthill-McKee
reordering.
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FIGURE 3.33. Sparsity pattern of the LU factors for SAMD-reordered HB
Jacobian (Fig. 3.31).

FIGURE 3.34. Sparsity pattern of the LU factors for SRCM-reordered HB
Jacobian (Fig. 3.32).
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FIGURE 3.35. Sparsity pattern for the Jacobian arising from the wavelet
expansion for Gilbert cell mixer in Fig. 3.24 with NH=9.
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FIGURE 3.36. Jacobian in Fig. 3.35 after symmetric approximate minimum
degree reordering.

FIGURE 3.37. Jacobian in Fig. 3.35 after symmetric reverse Cuthill-McKee
reordering.
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FIGURE 3.38. Sparsity pattern of the LU factors for SAMD-reordered wavelet
Jacobian in Fig. 3.36.

FIGURE 3.39. Sparsity pattern of the LU factors for SRCM-reordered wavelet
Jacobian in Fig. 3.37.
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3.5 CONCLUDING REMARKS

In this chapter we have proposed a new method for steady state analysis

of nonlinear circuits under periodic excitations. The new method is simi-

lar to the well known technique of Harmonic Balance, but uses wavelets

instead of Fourier series as expansion basis. The following features of the

new method have been established:

• The new method retains accuracy and speed of convergence of the tra-

ditional technique.

• Use of wavelets allows for significant increase in sparsity of the Jaco-

bian matrix and, consequently, in computational cost of the analysis,

in terms of both storage requirements and CPU time.

• The new method has O(N) computational complexity and thus is partic-

ularly advantageous for large scale simulations.

• With respect to the maximum order of IM components retained in the

simulation, the new method has also O(NH) computational complexity,

compared to for traditional Harmonic Balance. This makes the

new method particularly suitable for simulation of highly nonlinear cir-

cuits.

• Computational complexity of the new method for multitone simulations

does not depend on the number of tones, which makes it particularly

suitable for multitone simulations with large number of tones.

O NH
4( )
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• Computational complexity of the new method does depend of the den-

sity of the frequency grid, i.e. on the least common denominator of the

fundamental frequencies. Therefore it is advantageous for simulation of

wideband circuits where frequencies of the test tones can be moved

around further to fall on a lower density regular spaced grid.

The new method has a full potential of producing a major impact on

steady state analysis of large scale nonlinear circuits, as well as other sys-

tems described by nonlinear differential equations.
www.manaraa.com



4. OTHER APPLICATIONS

In this chapter we will consider the other applications of wavelets to the

problems encountered in EDA. Transient analysis of nonlinear circuits

continues the lumped parameter circuit analysis started in Chapter 3,

while the rest of the chapter is dedicated to the distributed parameter cir-

cuits.

4.1 TRANSIENT ANALYSIS OF NONLINEAR CIRCUITS

In this section we review the traditional time marching schemes and then

proceed with comparison to the wavelet methods. Simple analysis shows

that in transient analysis it is very difficult for the wavelet methods to

compete with traditional techniques. Numerical data from the literature

supports this point of view.

4.1.1 TIME MARCHING METHODS

Transient analysis of nonlinear networks with lumped parameters is tra-

ditionally performed in the time domain using time marching numerical

integration methods. The circuit is usually described by a set of coupled

nonlinear differential and nonlinear algebraic equations in time domain

(same as (3.1)):
www.manaraa.com
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(4.1)

where C and G are matrices containing imaginary and real parts

of the nodal admittances, x is a vector of the unknowns, is a

vector containing nonlinear terms and u is a vector of inde-

pendent sources. This is accompanied by a vector of initial conditions

(4.2)

thus creating an Initial Value Problem (IVP).

Because matrix C is in general case a singular matrix [18], the usual form

of IVP ODEs

(4.3)

does not exist. However, it is possible to separate differential equations in

(4.1) from the algebraic equations, writing it in state space formulation

(4.4)

State space formulation leads to smaller number of unknowns, but is less

convenient to implement for large circuits, produces denser matrices and

often is not beneficial in terms of computational cost.

Equation (4.1) can be discretised using any of the available numerical

integration techniques, producing a set of nonlinear algebraic equations

Cẋ Gx f x( ) u+ + + 0=

N x N x×

N x 1× f x( )

N x 1× N x 1×

x0 x 0( )=

ẋ C–
1–
Gx f x( ) u+ +( )=

ẋ Ax Bu+=

y Cx Du+=
www.manaraa.com



Chapter 4: Other applications 106
that has to be solved at each time point. For example, Backward Euler

(BE) formula with time step and produces the fol-

lowing equation:

(4.5)

which can be solved for  using Newton’s iterations:

(4.6)

In this case, Jacobian matrix J is given by

(4.7)

and it is an sparse matrix, which sparsity is completely deter-

mined by the structure of the original equation (4.1). If h is sufficiently

small, a good initial guess for can be easily obtained by extrapolating

, which provides quadratic convergence for Newton’s iterations (4.6).

Similar equations can be written for other numerical integration schemes,

but they all share the fact that Jacobian to be solved at each iteration is

an sparse matrix and it’s sparsity is completely determined by the

structure of (4.1), i.e. by the topology of the underlying circuit. Time

marching methods are rather well developed and their software imple-

mentation is very efficient.

h tn 1+ tn–= xn x tn( )=

Φ xn 1+( ) 1

h
---C xn 1+ xn–( ) Gxn 1+ f xn 1+( ) u tn 1+( )+ + + 0= =

xn 1+

J xn 1+
i 1+( )( ) xn 1+

i 1+( )
xn 1+
i( )

–( ) Φ xn 1+
i( )( )–=

J x( )
x∂

∂Φ 1

h
---C G+ 

 
x∂

∂ f
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4.1.2 WAVELET EXPANSION

Wavelet expansion for transient analysis is essentially similar to the one

for steady state analysis (introduced in Chapter 3), except for the bound-

ary conditions. In steady state analysis, periodic boundary conditions

(3.2) had to be imposed on the expansion basis. With transient analysis

being an IVP, there is usually no a priori information on the state of the

unknowns at the end of analysis interval . As so, expansion

basis has to be able to approximate any value of that is reasonable

under the circumstances. This can be achieved by using wavelets on an

interval with boundary adapted basis functions to preserve (bi)orthogo-

nality [8]. Construction of the transform matrices and is slightly dif-

ferent from that of described in Chapter 3, but they still are bandlimited

matrices. Apart from that, solution is similar to the steady state case. The

expanded equation, as before, is

(4.8)

where , and are matrices and is the number of

basis functions, also equal to the number of time points. Equation (4.8) is

solved by performing iterations and at each iteration Jacobian matrix to

be solved is

(4.9)

t 0 tmax,( )∈

x tmax( )

T T̃

Φ X( ) ĈD Ĝ+( )X F X( ) U+ + 0= =

Ĉ D Ĝ N tN x N tN x× N t

J X( ) ĈD Ĝ T
xl∂

∂ f k T̃+ +=
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which is also an sparse matrix with sparsity structure simi-

lar to the Jacobian matrix used in steady state analysis. Although this

matrix is only O(Nt) dense, it is easy to see that it is Nt times bigger than

the Jacobian for time marching methods which imposes a computational

cost penalty on expansion techniques. Another disadvantage of expansion

techniques is that the initial guess now has to be obtained not at a single

time point, but at all time points at once. This is quite a difficult task by

itself.

Wavelet methods for transient simulation have been researched by Zhou

et al. in [36]-[39] and independently by Steer and Christoffersen in [26],

[40] and [41]. A wavelet collocation method described in [38] features B-

spline-based biorthogonal wavelets, uniform error distribution and O(h4)

convergence (versus O(h2) for popular time marching methods like Runge-

Kutta). However only linear circuits were considered in that publication.

Adaptive wavelet scheme for nonlinear circuits was described in [38]

where higher scale wavelets are introduced only at those locations where

it is necessary to maintain accuracy and convergence of the scheme.

However, no direct comparison of computational cost with time marching

schemes was provided and numerical results (not surprisingly) showed

that CPU time increases dramatically with the increase in the length of

the time interval (e.g. two times increase in interval length resulted in 5-6

times increase in CPU time).

N tN x N tN x×
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These results are further corroborated by Steer and Christoffersen for

state space formulation. For example, direct comparison between wavelet

collocation expansion and time marching schemes (Backward Euler) was

made in [40] and [41]. Backward Euler formula follows from (4.8) by

assuming transform matrices and . This excludes

inaccuracies in CPU time measurement that may result from different

implementations, although puts time marching method at a slight disad-

vantage as Jacobian in this case is twice as large as for the traditional BE

formulation (4.7). In conclusion, it was noted that

“Although this implementation of a time marching

transient analysis is inefficient, it is several times

faster than the simulation using wavelets. This is

because the solution of the nonlinear system in wavelet

transient presents two problems: the initial guess in

the Newton method is not close to the solution and the

number of nonlinear unknowns grows quickly with the

window resolution despite the state-variable reduc-

tion.”

We can conclude from the above that although wavelet methods for tran-

sient analysis show certain potential, particularly in view of adaptive

techniques, it will be very difficult for them to compete against well engi-

neered and well established time marching schemes. Advantage of the

steady state wavelet methods over Harmonic Balance is primarily due to

T 1 0

1 1
= T̃ 0 1

0 1
=
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the significant increase in sparsity of the Jacobian, and that’s even before

adaptive schemes are introduced. In transient analysis there is no such

advantage for wavelet methods in sight and a lot of research into improve-

ment of wavelet adaptive schemes has to be done before they can compete

with time marching methods.

4.2 TRANSMISSION LINE MACROMODELLING

With continuously increasing clock speeds and chip density, analysis of

interconnects for signal integrity validation becomes extremely important

[57], [58]. Distributed parameter interconnects in the form of multicon-

ductor transmission lines under quasi-TEM assumption are described by

a set of Partial Differential Equations (PDEs) in time-spatial domain

known as the Telegrapher’s equations [57]:

(4.10)

Where and are vectors of voltages and currents that are func-

tions of both time t and position along the line z; R, L, C and G are

matrices of per-unit-length parameters and is the number of conduc-

tors not including the ground. For transmission lines with non-transla-

tion-invariant cross-sections (non-uniform lines), per-unit-length

parameter matrices are functions of z. In case when frequency dependent

z∂
∂ v z t,( )

i z t,( )
0 R z( )

G z( ) 0

0 L z( )
C z( ) 0 t∂

∂
+

 
 
  v z t,( )

i z t,( )
–=

v i N c 1×

Nc Nc×

Nc
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parameters (e.g., due to skin effect) have to be taken into account, matri-

ces R, L, C and G can also be functions of frequency.

By denoting length of the line as d and taking Laplace transform of (4.10)

in time domain, we can solve (4.10) in frequency domain for terminal volt-

ages and currents and write a set of linear algebraic equations coupling

them [42] in terms of y-parameters:

(4.11)

or hybrid ABCD parameters:

(4.12)

where I is the  identity matrix.

The problem with such formulation is that the circuit equations for the

nonlinear lumped parameter network

(4.13)

are inherently nonlinear and thus can not be represented in frequency

domain, while transmission line stamps (4.11) and (4.12) are in frequency

domain and do not have a direct representation in terms of time domain

ODEs.

i 0( )
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v 0( )
v d( )

=

T 11 I–

T 21 0

v 0( )
v d( )

T 12 0

T 22 I–

i 0( )
i d( )

+ 0

0
=

Nc Nc×
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The goal of constructing a macromodel is to convert (4.10) to a set of ordi-

nary differential equations (ODEs) in time domain, such that they can be

coupled with equations (4.13) for the nonlinear lumped parameter net-

work and solved together in a circuit simulator. This can be performed by

expanding equations (4.10) in a suitable basis along the spatial domain.

Results of this approach published in the literature include expansion in

Chebyshev polynomial basis [44] and biorthogonal wavelet bases on an

interval [45]-[47]. Paper [48] also explores time domain expansion of

(4.10) in terms of orthogonal Daubechies basis, which is only suitable for

uniform transmission lines. Both time domain and space domain wavelet

expansion are further explored in [49], while [50] combines time domain

expansion in wavelet terms with Finite Element-based spatial domain

expansion to handle nonuniform transmission lines.

However, in order to avoid stability problems during simulations, a trans-

mission line macromodel has to be passive by construction or a proof of

passivity has to exist for it [42]. Transmission lines are essentially passive

systems. Transmission lines can be represented by non-passive, but sta-

ble by themselves models, but when such models are coupled with vari-

ous terminating networks they can become unstable and produce non-

physical solutions.

Wavelet methods are potentially more efficient than other expansion

methods, particularly for highly nonuniform transmission lines, but until
www.manaraa.com
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a proof of passivity (e.g. like in [43] for rational matrix approximation) is

found, they probably will not find any significant use in EDA tools. The

fact that Finite Difference expansion macromodels are passive by con-

struction is encouraging (in view of FD being equivalent to discretisation

in Haar basis), but more research is needed in this direction.

4.3 CAPACITANCE EXTRACTION

4.3.1 PROBLEM BACKGROUND

Interconnect parameter (matrices R, L, C and G in (4.10)) extraction prob-

lem represents one of the most computationally expensive steps of cur-

rent high-speed circuit design process. Calculating capacitance matrices

as well as matrices of other physical interconnect parameters is the foun-

dation of interconnect analysis. Configuration of interest includes multi-

conductor transmission lines in multilayered dielectric media [70] (Fig.

4.1). The transmission line consists of a number of conductors of arbi-

trary shapes. Some of the conductors can be of a finite cross section,

while others are infinitesimally thin. Conductors can be touching a dielec-

tric interface, straddling a dielectric interface or be totally embedded in a

single dielectric layer. Configuration is assumed to be uniform in the

direction of z axis. Dielectric interfaces are all assumed to be parallel to

the x-z plane, which is usually the case for on-chip interconnects, as well
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Chapter 4: Other applications 114
as PCB level interconnects. This configuration can be bounded by ground

planes on either side, any two or three sides or on all four sides.

Existing methods of capacitance calculations can be loosely split into two

categories.

The first category involves calculation of electrostatic field by solving the

Laplace equation:

(4.14)

x

y

εn

ε
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3

…

FIGURE 4.1. Multiconductor transmission line in arbitrary multilayered
dielectric media.
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together with associated boundary conditions. This is solved by Finite

Elements Method (FEM) or Finite Differences Method (FDM). These dis-

cretisation techniques typically result in sparse matrices, but the dimen-

sion of these matrices dramatically grows with the geometrical complexity

and condition number of the matrix deteriorates accordingly. Because of

these disadvantages, this method is not widely used.

The second category involves solution of the integral equation for superfi-

cial charge density:

(4.15)

Where G is the kernel of linear integral equation (Green’s function associ-

ated with (4.14)), is superficial charge density and is the domain of

interest (in this case - surface of the conductors). Discretisation of (4.15)

is usually performed by Method of Moments (MoM) or its variations, such

as Boundary Elements Method (BEM) ([1], [2]). Stiffness matrices result-

ing from MoM/BEM are typically smaller than the ones for FEM/FDM,

but in general these are full matrices and for practical 2D and 3D prob-

lems, computational cost O(N3) of solving such matrices is often prohibi-

tive for use on day-to-day basis in CAD tools. This prohibits today state-

of-the-arts VLSI physical parameter extraction software from using inline

field solvers in favour of precalculated libraries for typical geometries with

empirical matching and calibration procedures for mapping actual geom-

σ r'( )G r r',( ) r'd
Ω
∫ v r( )= r r', Ω∈
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etry into library patterns [59]. Existing general purpose field solvers sim-

ply are not flexible enough to provide an efficient trade off of accuracy for

execution time [60]. In fact, if a BEM equation does not converge to a suit-

able accuracy, expansion basis should be updated and a new MoM matrix

should be assembled. Denseness of this matrix as well as non-compact-

ness of the kernel renders iterative matrix solvers to be unreasonably

expensive to use [61].

A great deal of research has been done in accelerating BEM techniques.

Examples of such fast algorithms are: applications of fast n-body problem

algorithms including multipole accelerated algorithm [62] and Appel’s

hierarchical algorithm [65]. These algorithms have O(N) cost per iteration

for kernels, but exhibit significant slowdown for hypersingular

(e.g. ) operators and therefore are not so effective for practi-

cal problems on bounded domains (layered dielectrics, ground planes,

etc.) where in this case EM interfaces should be explicitly taken into

account by calculating bounded charge densities. Singular Values

Decomposition (SVD) accelerated algorithm of Kapur et al. [63] is efficient

and independent of kernel type, but in general case it still requires O(N2)

operations for constructing the matrix and O(NlogN) operations per itera-

tion for solving it. These methods use Galerkin discretisation in pulse

functions basis. Precorrected-FFT algorithm [64] is similar to SVD algo-

rithm in terms of efficiency and is based on collocation technique.

1 x x ′–⁄

1 x x ′–⁄( )log
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The other main reason for the high computational cost of capacitance

extraction with traditional approaches is the need to solve for the field

distribution or superficial charge density on the whole domain of interest

(as it is always the case with pulse expansion basis and collocation meth-

ods). However, knowing only the total surface charge (per conductor or per

unit length) is quite sufficient for calculating capacitance matrix. In this

section a new approach is presented that couples this idea with wavelet

analysis and features sparse representation of single- and double-layer

potential and hypersingular kernels, accurate calculations of total charge

without obtaining charge density per se and easy trade of speed for accu-

racy.

Proposed algorithm is based on the recent advances in approximation

theory which allow construction of orthogonal wavelet bases on

and that also have limited support in both time/spatial and fre-

quency domain (Section 2.4). First achievements of wavelet applications

with respect to numerical analysis were in connection with sparse repre-

sentation of Calderon-Zygmund type kernels, preconditioning of stiffness

matrices arising from discretisation of pseudodifferential equations and

fast matrix-vector multiplication algorithms ([11], [12], [13], [14]). Later

advances also dealt with construction of wavelets on an interval, operator

wavelets diagonalising certain types of operators [15], and quite recently,

with discretisation of singular and hypersingular kernels and conver-

L
2 ℜ( )

L
2

0 1,( )
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gence of sparse systems obtained for such types of kernels ([54], [55],

[56]).

The first attempt of approaching capacitance extraction problem from the

wavelet point of view was done by Wang et. al. [67] with the main focus on

handling arbitrary geometries by combination of boundary element and

conformal mapping techniques. Here we extend that technique with prin-

cipal emphasis on the computational efficiency. The principal differences of

the proposed approach from the previously published wavelet-based tech-

nique are:

• Wavelet expansion together with the proposed matrix thresholding

strategy results in extremely sparse matrix, which leads to substantial

gain in CPU time and storage requirements.

• Wavelets by themselves have zero average and directly contribute only

to the charge distribution on conductor and not to the total charge.

This allows us to compute total conductor surface charge from the scal-

ing function coefficients without paying high costs of computing exact

charge distribution.

• Iterative construction of the equation matrix in wavelet basis allows

easy and efficient trade of speed for accuracy.

Together with simultaneous utilization of other key acceleration ideas

[62]-[65], these concepts provide potential for an “inline” capacitance

extraction engine for very large scale problems.
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4.3.2 WAVELET EXPANSION OF INTEGRAL EQUATIONS

We start with construction of orthonormal periodical wavelet basis on

[67]. Define to be scaling function and to be

wavelet function (section 2.3.5).

For wavelets with local support periodical basis on the interval can be

easily created by choosing  such, that

, (4.16)

where supp is support operator, and simply deleting wavelet functions

and scaling functions outside this interval [67]. In this case, utilization of

periodic wavelets does not sacrifice orthogonality and all the multiresolu-

tion properties defined in section 2.3.5 as well as regularity and moment

properties outlined in section 2.4.2. The only difference is that we start

multiresolution analysis from V0 and go up to VJ. For convenience, we

renumber wavelet basis in the following manner:

, , , , , . (4.17)

This basis can be further scaled

(4.18)

and normalized, such that it covers every spatial subdomain ,

where I is the total number of elementary conductors, each subdomain
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being surface of a conductor subject to calculation of capacitance. For

conductors of a regular shape (rectangular, circular, etc.) number of ele-

mentary conductors is equal to the number of physical conductors. Oth-

erwise, it will depend on decomposition of conductor shape for applying

conformal mapping technique [67].

Let us define inner product (section 2.1.2) as:

(4.19)

For the capacitance extraction problem, linear operator in equation (2.27)

takes the form integral operator on an interval:

(4.20)

where G is defined as in (4.15).

For integral operators in general, matrix in equation (2.33) is a full matrix

[61], with the cost of assembling such matrix itself being of O(N2) and cost

of solving equation being of O(N3). This cost can be substantially reduced

by choosing orthogonal wavelets with compact support as basis functions

and successive thresholding of stiffness matrix that results in sparse

matrix format [14].
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4.3.3 ELECTROSTATIC KERNELS AND THRESHOLDING

TECHNIQUES

Consider discretization of an electrostatic problem kernel (Fig. 4.2):

(4.21)

on interval (-1,1) in Daubechies basis (Fig. 4.3) by means of Galerkin

expansion. This kernel is a typical representative of the class of kernels

arising from electrostatic problems, such as capacitance extraction. From

EM point of view this kernel represents electrostatic potential due to a

single point charge in free space. Integral equation kernels for arbitrary

geometry can be represented by a general linear combination of spatial
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FIGURE 4.2. Typical electrostatic problem kernel.
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dilations of this kernel. This kernel has a pronounced singularity along

and it’s Galerkin-wavelet stiffness matrix (Fig. 4.4 - note log scale

on the vertical axis) has numerically significant elements only when cor-

responding pair of basis functions is at scales and locations in the vicinity

of this singularity. This is quite understandable, considering local sup-

port and vanishing moments of Daubechies wavelets (section 2.4.2). Out-

side of these locations, elements of the stiffness matrix are orders of

magnitude lower and can be successfully discarded with losing very little

information about the original operator (Fig. 4.5).

However, for electrostatic problems on bounded domains, such as con-

ductors embedded in multilayered dielectrics and/or between ground

planes, the straightforward approach of using Green’s function (4.21) if
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FIGURE 4.3. Daubechies second order basis on an interval (resolution levels 0 to
4).
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simple, is not the most advantageous. With multiple dielectric-dielectric

and/or dielectric-conductor interfaces free charges experience multiple

reflections. Equivalent Green’s function becomes a weighted sum of (4.21)

and exhibits significantly more pronounced singularity and slower decay.

A usual workaround is to use simple Green’s function (4.21) and take into

account interfaces by explicitly computing bounded charge densities.

Such approach leads to significant increase in number of unknowns for a

problem that is already large dimensioned. The other approach is to use

generalized Green’s functions that incorporate all boundary conditions

thus effectively representing bounded charge in implicit way. Generalized

Green’s functions [68], [69] with decay slower than belong to the
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FIGURE 4.4. The stiffness matrix for singular electrostatic kernel (Fig. 4.2)
discretised in Daubechies basis (Fig. 4.3). Note log scale on vertical axis.
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class of hypersingular kernels [54] that presents a very difficult numerical

problem to solve (quickly deteriorating matrix condition numbers result in

slow convergence). Fortunately, wavelet treatment of hypersingular opera-

tors was proven to be as efficient as for other types of integral operators.

We proceed with illustrating this with an example of hypersingular kernel

that also arises from an electrostatic problem.

Consider an electrostatic problem kernel (Fig. 4.6):

(4.22)
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FIGURE 4.5. Sparsity pattern for the stiffness matrix (Fig. 4.4) compressed at
threshold 10-2.
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This kernel is a representative of class of hypersingular kernels that also

corresponds to the electrostatic potential due to a charge filament in free

space. Stiffness matrix obtained from Galerkin discretisation in Daub-

echies basis is shown in Fig. 4.7 and sparsity pattern of compressed

matrix in Fig. 4.8. Comparing these results with the ones for the ordinary

singular kernel (4.21) we confirm results published in [54] stating that

hypersingular operators can be successfully discretised in wavelet bases

with thresholding that leads to a sparse matrix. An important conse-

quence of this is that wavelet algorithms can take full advantage of gener-
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www.manaraa.com



Chapter 4: Other applications 126
alized Green’s functions for capacitance extraction calculations in

multilayered dielectrics.

The usual way (e.g. [67]) of thresholding stiffness matrix A is to choose a

largest by absolute value element amax and discard all the elements that

are less than by absolute value. Fig. 4.8 shows an example of typi-

cal sparsity pattern obtained by means of such thresholding technique.

Conventional approach to thresholding described above (we will call it soft

thresholding) exhibits the same rate of convergence as the uncompressed

system [54], but the computational gain from transition to sparse format

is moderate. Despite the widespread claims in mathematical literature

0
10

20
30

40

0
10

20
30

40

−5

−4

−3

−2

−1

0

1

2

3

n
m

FIGURE 4.7. The stiffness matrix for the hypersingular kernel (Fig. 4.6)
discretised in the Daubechies basis (Fig. 4.3). Note log scale on vertical axis.

εamax
www.manaraa.com



Chapter 4: Other applications 127
that soft thresholding produces an O(N) sparse matrix, Wagner and Chew

showed in [53] that for a wide range of scattering EM problems sparsity of

the stiffness matrix obtained with pulse expansion and subsequent wave-

let transform and thresholding is , where is a very weak func-

tion of the problem size.

Refer to Fig. 4.9. Six plots in Figs. 4.9a, 4.9b and 4.9c represent sparsity

patterns (left column) and accuracy vs computational cost (right column)

plots. Accuracy is represented as absolute value (in percent) of error for

integral of approximate solution (2.25) plotted versus computational cost

(in flops) required to obtain such accuracy at increasing orders of expan-
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FIGURE 4.8. Sparsity pattern arising from the stiffness matrix for the
hypersingular kernel (Fig. 4.7). Compressed at threshold 10-2.
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sion. Integral equation with kernel (4.22) has an analytical solution, that

makes error estimation a straightforward and accurate process. Fig. 4.9a

and 4.9b contain data for soft thresholding with parameter and

correspondingly. One can see that for computational

gain is practically non-existent and barely reaches an order of magnitude

for . Accuracy stays within several percent which is suitable for

our application. With further increase of thresholding parameter, com-

pressed matrix often becomes singular and requires special treatment.

In order to dramatically reduce computational cost, we apply aggressive

thresholding technique (we call it hard thresholding) with the goal to

obtain maximum sparsity with guaranteed absence of singularity in com-

pressed stiffness matrix (Fig. 4.9c). To obtain this, we discard all the ele-

ments in stiffness matrix with absolute value less than threshold

computed as

(4.23)

where is a relaxation coefficient (typically is equal to 1) that gives

an extra degree of freedom in handling stiff systems. Hard thresholding

does not necessarily exhibit uniform convergence, but provides reason-

able accuracy (better than 10%), bounded by the accuracy of uncom-

pressed system, for the capacitance extraction. Resulting matrix is

extremely sparse and almost diagonal that allows to achieve huge compu-

tational gain (2 to 3 orders of magnitude) with very little respect to the

ε 10
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ε 10
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= ε 10
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order of expansion. Should convergence of solution for hard thresholded

matrix prove to be unsatisfactory, relaxation coefficient can be lowered

at any time, new nonzero elements introduced into matrix and another

iteration performed. Note, that results of a previous thresholding iteration

are completely reused here and we can start with sparse matrix repre-

sented in Fig. 4.9c and gradually move back to the case of Fig. 4.9b termi-

nating calculations as soon as necessary accuracy is obtained.

4.3.4 CALCULATING CHARGE DENSITY VERSUS CALCULATING

CHARGE

The next important foundation of the proposed technique is the ability, by

virtue of multiresolution analysis, to obtain per-unit-length charge values

directly from wavelet expansion coefficients without performing inverse

wavelet transform and integrating charge density.

When the capacitance extraction problem is approached via solution of

integral equation (4.15), as it is in our case, superficial charge density

has to be integrated over the surface of respectful conductors. This

results in matrix of per-unit-length charges :

(4.24)

γ

σ

Qij[ ]

Qij σ r( )
V j 1 V j', 0 j j'≠,= =

rd
Ωi

∫=
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that is, of charges induced on i-th conductor by forcing unit potential on

j-th conductor and zero potential on the others. Capacitance matrix is

then obtained by inverting matrix of charges:

(4.25)

Consider approximation of  in wavelet basis (4.17):

(4.26)

Together with (2.68), (4.16) and orthonormality of the wavelet basis it

immediately follows that

. (4.27)

In other words, all the wavelet coefficients at scales higher than 0 contain

no information about total charge on a conductor1. It means that, for the

purpose of capacitance extraction, we only need to compute scaling func-

tion coefficients with required accuracy, while the wavelet function coeffi-

cients are necessary to satisfy equation (2.33) just in energetic sense. In

1. We should mention here that wavelet bases are obviously not the only ones that pro-
vide separation of average value from the rest of the solution. Another example of such
basis is the complete Fourier basis on . This basis, however, does not form mul-
tiresolution analysis and does not have vanishing moments, i.e. kernels discretised in
this basis give rise to essentially dense matrix. In some cases, some kind of threshold-
ing can be successfully applied to such matrix, but in general we can not expect that
it would always be the case.

C Q
1–

=

σ

σ̂ ProjV 0
σ ProjW j

σ
j 1=

J

∑+≅

Qij σ̂ r( ) rd
Ωi

∫ α0 0 i;, ϕ0 0 i;, r( ) rd
Ωi

∫ α j k i;, ψ j k i;,
Ωi

∫ r( )dr
k( )
∑
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∑+ α0 0 i;,= = =
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fact, hard thresholding considered above is a direct consequence of this

observation: since we are not interested in particular charge density dis-

tribution, we can be more aggressive in thresholding those matrix entries

that correspond to wavelet functions with zero average. The number of

scaling function coefficients for which we are looking for is significantly

less than total order of expansion and is comparable to the number of ele-

mentary conductors. This is one of the key points of the proposed

approach.

4.3.5 THE ITERATIVE WAVELET ALGORITHM FOR

CAPACITANCE EXTRACTION

We propose the following algorithm for efficient capacitance extraction in

wavelet domain.

1. Choose wavelet basis.

2. Choose highest level of expansion J and compute main diagonal of

the stiffness matrix.

3. Compute first approximation of solution for strictly diagonal

matrix. Set thresholding relaxation coefficient .

4. Compute threshold as per (4.23).

5. Set j=1.

γ 1=
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6. If we already have matrix elements computed at this level, go

to 8.

7. Compute matrix coefficients at level j. Threshold a priori

insignificant elements while computing. Store the rest of coef-

ficients for future use.

8. Threshold matrix elements at level j with γ.

9. Solve the new matrix equation.

10. Compute capacitance matrix.

11. Estimate convergence of solution. Stop if satisfactory.

12. Proceed to the next scale of expansion: j=j+1.

13. If j<J, go to 7.

14. Set lower value for γ.

15. Go to 4.

4.3.6 COMPUTATIONAL COMPLEXITY AND IMPLEMENTATION

ISSUES

As seen from the previous sections, intelligent choice of wavelet basis for

capacitance extraction would imply expectations of significant stiffness

matrix coefficients corresponding to scaling functions and linking scaling
www.manaraa.com



Chapter 4: Other applications 134
functions between each other as well as with wavelet functions. All the

other coefficients should be as small as possible in order to obtain better

sparsity after compression.

Following considerations for wavelet properties should be taken into

account while choosing expansion basis:

• local support;

• orthogonality;

• highest number of vanishing moments for a wavelet function with given

support width;

• non-vanishing moments for scaling function.

Daubechies wavelets satisfy all of these requirements and as so make up

an optimal basis for the capacitance extraction.

As we have mentioned before, decreasing support width and increasing

number of vanishing moments give rise to better compression of stiffness

matrix. This is a general rule of the thumb that might impose certain dif-

ficulties while choosing particular order of Daubechies wavelets. Recall

[5], that Daubechies wavelets of order N have support width of 2N-1, N

vanishing moments for wavelet function and no vanishing moments for

scaling function. One can not simultaneously decrease support width and

increase number of vanishing moments. In fact, it was proven that this

particular wavelet has the highest number of vanishing moments for a
www.manaraa.com
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given support width. Fortunately, hard thresholding that we use for com-

pression of stiffness matrix is not so sensitive to the order of Daubechies

wavelets (Fig. 4.10). For the purpose of capacitance matrix computations,

simple order 1 Daubechies wavelets, also known as Haar wavelets, pro-

vide similar convergence as the higher order wavelets (see Table 4.1).

Solving equation (4.15) for the integral of σ rather than for charge density

itself also relaxes convergence criteria. Dahmen et. al. showed in [54] that

a matrix equation arising from discretisation of (hyper)singular integral

equations in wavelet bases can exhibit the same speed of convergence

with matrix compressed to O(N) nonzero entries as the original uncom-

pressed matrix provided that proper wavelet basis is chosen. This essen-

tially means that, in order to achieve O(N) computational costs, a special

TABLE 4.1. Comparison of convergence for thresholded matrices
obtained with different wavelets.

γa

a. Relaxation coefficient for hard thresholding.

matrix Fig. 4.10 (left) obtained with Haar
wavelets

matrix Fig. 4.10 (right) obtained with
Daubechies order 5 wavelets

nzb

b. Number of nonzero entries in 64x64 sparse matrix.

matrix
condition

number

charge
density

RMS

errorc

c. Calculated as the ratio of Euclidian norm of difference between numerically com-
puted charge density and closed form solution for charge density related to the
Euclidian norm of the latter.

PUL
charge

errord

d. Calculated as the error of numerically computed per-unit-length charge related
to the closed form solution.

nzb

matrix
condition

number

charge
density

RMS

errorc

PUL
charge

errord

0.003 2,232 60.5278 5.6% 3.4% 1,560 46.4895 5.1% 3.3%

0.001 1,640 62.1117 5.8% 3.3% 1,212 46.5984 5.4% 3.3%

0.03 1,060 63.5899 8.3% 3.3% 778 46.2896 5.9% 3.3%

0.1 616 50.7706 25% 3.0% 334 41.2817 12% 3.6%

0.3 196 31.2428 33% 2.6% 160 30.4702 29% 3.7%

1.0 102 28.5450 45% 4.8% 86 28.2838 39% 6.2%
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wavelet family should be constructed for each particular kernel. This is

true for convergence criteria based on Euclidian norm of the solution.

However, in our case convergence criteria can be based on a much more

relaxed error condition for the integral of solution, which also relaxes

requirements for the choice of basis. For the purpose of capacitance

extraction, there is no need to construct special wavelet family for each

type of Green’s function as ordinary Daubechies wavelets appear to do

the job.

This relaxation of convergence criteria allows to obtain good approxima-

tion of the total charge on conductor without accurately computing sur-

face charge density. An illustration of this phenomena can be found on

Fig. 4.11, which plots normalized surface charge density as a solution of
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FIGURE 4.10. Side-by-side comparison of sparsity patterns for the compressed
stiffness matrix obtained from Haar (left) and Daubechies order 5 (right)
wavelets; hard thresholding in both cases.
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uncompressed matrix, compressed with hard thresholding and closed

form expression. One can see that while compressed solution approxi-

mates surface charge density in a rather erratic manner (RMS error 36%),

total charge on the conductor is approximated within 0.64% from the

closed form solution. The uncompressed solution gives good approxima-

tion for both charge density and total charge, but this comes at signifi-

cantly higher computational cost of solving a full matrix.
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FIGURE 4.11. Normalized surface charge density on a microstrip approximated
with a solution of the uncompressed and compressed system.
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Now let us consider the implementation issues. At Step 9 of the algorithm,

one may use any kind of general purpose matrix solver. However, the pro-

posed method will most benefit from custom solvers. Using general pur-

pose solvers leads to an observation that, with aggressive thresholding,

combined cost of matrix preordering (minimum degree), LU decomposi-

tion and forward/backward substitution is still less than the cost of just a

single iteration for generalized minimum residue method. In fact, one can

see (Fig. 4.10) that sparsity pattern of the Galerkin-wavelet matrices is

very specific, which makes preordering nearly trivial. This might not

always be the case, however, for extremely large problems, where iterative

techniques may gain advantage. A custom iterative solver optimized for

minimization of residue in terms of capacitance matrix, not just the Euc-

lidian norm of solution vector, should further improve efficiency of large

scale capacitance extraction. This statement is based on the fact that a

good initial guess for main diagonal of capacitance matrix can be made at

the expense of O(N) operations and even better guess for the whole capac-

itance matrix at the expense of O(L3). Together with possibility of effective

preconditioning [14] resulting in matrix condition number (and, conse-

quently, number of iterations) to be independent of N, this provides

potential for a very fast matrix solver. Similarly to this, a custom preor-

dering technique will be highly beneficial for LU/FBS approach. This

technique should take into account block structure of the sparse stiffness
www.manaraa.com
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matrix (Fig. 4.12) as well as very special sparsity pattern of each block

(Fig. 4.10).

4.3.7 NUMERICAL RESULTS

We proceed with experimental study of convergence speed of the proposed

technique on a moderately sized examples. For the sake of convenience,
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FIGURE 4.12. Typical sparsity pattern for the stiffness matrix obtained from
Wavelet-Galerkin expansion: 10 microstrips, 64 Haar wavelets per microstrip.
0.2-relaxed hard thresholding.
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these examples are limited to uniform multiconductor transmission lines

in multilayered dielectric media. Comprehensive discussion of applicable

technique for handling conductors of arbitrary shapes [67] was done

before and are not the key point here. We do not provide side-by-side

comparisons with other extraction software as implementation issues can

significantly affect required CPU time.

All numerical experiments presented in Section 4.3 were performed on a

Sun SPARCstation with 143 MHz UltraSPARC CPU, 0.5 MB of L2 cache

and 128 MB of 71.5 MHz physical RAM. The equivalent CPU speed of this

workstation was found to be approximately 19 Mflops (see Section A.2 on

page 158).

First sample configuration incorporates 10 infinitely thin microstrips

arranged on 2 levels and embedded in a dielectric slab shielded from all

sides (Fig. 4.13). 2D spatial Green’s functions for this configuration were

derived in [69, equations (53)-(56)]. For the reasons stated above, we use

Galerkin expansion with Haar wavelet basis as the simplest one. Order of

expansion is increased in dyadic manner in the range of 4 to 64 wavelets

per microstrip, such that another complete level of wavelets can be added.

As such problems no longer have a closed-form solution, we are forced to

use a numerical solution as a reference. This reference solution was

obtained from a high-order Haar-Galerkin expansion (at 256 wavelets per

microstrip) without compression of stiffness matrix and with Green’s func-
www.manaraa.com
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tion evaluated at the same fine grid. Capacitance matrix computation

error was estimated in two ways: error of matrix 1-norm and 2-norm. 1-

norm error gives estimation of accuracy for the self and mutual capaci-

tances, while the 2-norm error bounds accuracy of the largest eigenvalue

of capacitance matrix. Finally, we made comparison against MoM method

with traditional basis of pulse functions. As pulse functions also happen

to be scaling functions for the Haar wavelets, the same procedure as

described in section 4.3.5 was applied to generate MoM stiffness matrix

with setting initial order of expansion more than the highest order of

expansion (j=J-1 so that the algorithm would stop after generating a full

set of scaling functions only) and thresholding parameter γ=0. A standard

LU/FBS matrix solver (Gaussian elimination with partial pivoting) was

used for compressed, uncompressed and reference solution (with non-

symmetric minimum degree preordering in the sparse case).
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FIGURE 4.13. Configuration for Example 1. All dimensions are in micrometers.
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Fig. 4.12 shows sparsity pattern obtained after compression of stiffness

matrix using hard thresholding technique with relaxation coefficient

at the highest order of resolution . Note that the

matrix has essentially block structure with each on-diagonal block repre-

senting a microstrip and each off-diagonal block representing coupling

between microstrips. All the coefficients corresponding to scaling func-

tions are retained, while the absolute majority of coefficients associated

with wavelet functions are successfully discarded, resulting in sparsity

ratio of better than 0.7% and good accuracy for the capacitance extrac-

tion. Condition number of the compressed matrix also was improved by

approximately 2 times compared to uncompressed one. Initial guess for

capacitance matrix obtained at a cost of O(L3) was within 30% error for

any given element of the capacitance matrix. Storage requirements at

expansion level providing 0.01% accuracy were 3.27 MB for the uncom-

pressed matrix and only 43.5 kB for the sparse case, which makes a 75-

fold improvement.

Fig. 4.14 portrays results of consecutive Haar-Galerkin computations at

increasing levels of resolution. Computational cost is presented in terms

of number of floating point operations. This results illustrate two notable

conclusions: first, Wavelet-Galerkin method with appropriately relaxed

hard thresholding results in capacitance matrix calculated with very rea-

sonable accuracy and uniform convergence, and second, computational

cost for these calculations remains extremely low - less than 106 flops,

γ 0.2= N 64 10×=
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compared to the range of 107-109 flops for traditional basis with the same

level of accuracy. That makes computational gain of up to 3 orders of

magnitude for even a moderately sized problem. This example also illus-

trates essential equivalency of the error criteria based on matrix 1- and 2-

norms.

Second example (Table 4.2) involves progressively increasing number of

conductors arranged in the same manner as above (Fig. 4.13) with fixed

separation between the conductors. Width of the structure was adjusted

1−norm
2−norm
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FIGURE 4.14. Capacitance matrix computation error versus computational cost:
10 microstrips, Haar wavelets, 4...64 wavelets per microstrip, 0.2-relaxed hard
thresholding.
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accordingly to keep 2 mm separation between the side walls and conduc-

tors. Expansion order was kept at 64 basis functions per conductor.

Expansion was performed with order 5 Daubechies wavelets. A Gaussian

elimination with partial pivoting matrix solver was used for both dense

and sparse matrices with nonsymmetric minimum degree preordering in

the sparse case. Hard thresholding with was used as matrix com-

pression scheme. The goal of this experiment was to compare convergence

of uncompressed and compressed systems and verify that compressed

system converges with the same speed as uncompressed one. The last

column lists compression error estimated in Euclidian matrix norm of

capacitance matrix. This data shows that compression error not only

TABLE 4.2. Convergence comparison of uncompressed and
compressed matrix.

La

a. Number of conductors.

Nb

b. Matrix size.

uncompressed matrix compressed matrix

 errorc
CPU

time, s
Mflops
count

memory,
Mbytes

CPU

time, sd
Mflops
count

memory,
Mbytes nze

10 640 10.1 176.5 3.12 0.02 0.008 0.014 906 1.3%

15 960 34.1 593.5 7.03 0.04 0.017 0.022 1436 0.8%

20 1280 88.6 1,404.2 12.5 0.06 0.035 0.031 2016 0.5%

25 1600 159.9 2,739.3 19.5 0.11 0.111 0.040 2646 0.4%

30 1920 288.9 4,729.8 28.1 0.13 0.088 0.051 3326 0.35%

35 2240 449.9 7,506.5 38.3 0.16 0.269 0.062 4056 0.29%

40 2560 789.1 11,200.0 50.0 0.24 0.185 0.073 4836 0.25%

45 2880 975.3 15,942.0 63.3 0.27 0.529 0.086 5666 0.22%

50 3200 1,426.6 21,863.0 78.2 0.30 0.334 0.099 6546 0.19%

55 3520 1,844.4 29,093.0 94.5 0.45 0.919 0.114 7476 0.17%

60 3840 2,561.0 37,764.0 112.5 0.42 0.548 0.129 8456 0.15%

γ 1=
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remains bounded, but slightly decreases with increased number of con-

ductors, which suggests that for large scale problems even more aggres-

sive thresholding can be used approaching computational costs to the

theoretical limit of O(N). The actual computational cost in terms of the

number of nonzero elements in the stiffness matrix together with the

asymptotic slopes is also plotted in Fig. 4.15 and it is quite reasonable to

conclude that computational cost is much closer to O(N) than to O(N2).

c. Estimated as , where C is obtained from solution of the uncom-

pressed system and Cc obtained from solution of the compressed one.

d. Accurate to the CPU time slice.

e. Number of nonzero entries in sparse matrix representation.
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FIGURE 4.15. Computational cost for example 2.
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Third example compares proposed technique with the one previously

published in the literature [67]. This example represents multiconductor

transmission line with thick substrate where the transmission lines are

located high above the ground plane in comparison with their cross-sec-

tion and separation between conductors (Fig. 4.16). Generalized Green’s

function for this configuration were derived in [68, equation 16b] and

used here with nine exponentials in approximation. The proposed tech-

nique was formulated with 64 Daubechies order 5 wavelets per each con-

ductor and hard thresholding with . The hybrid method of [67] was

formulated as previously published, i.e. with 16 wavelets per conductor

plus 256 wavelets at the dielectric interfaces and soft thresholding at

. Traditional BEM solution as quoted in [67], Table IIIb, was

εr 11=

εr 5=εr 1=

600

2 6 9 12 15

1.5

1.0

FIGURE 4.16. Configuration for Example 3. All dimensions are in micrometers.

γ 1=

ε 10
3–

=
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taken as a reference to calculate Euclidian norm error of the capacitance

matrix. Results of comparison are summarized in Table 4.3.

This comparison illustrates the idea that with the proposed method we

should not be afraid of choosing high order of expansion from the begin-

ning. Higher order of expansion will be compensated by more aggressive

thresholding and incorporation of multilayered dielectric interfaces into

the kernel. Error estimation does not necessarily mean that the proposed

technique produced a more accurate solution, as the reference solution

itself could be somewhat inaccurate too. Still, this gives the confidence

that the proposed technique provides accuracy equivalent to the other

two methods, being significantly more efficient.

4.3.8 SUMMARY OF THE CAPACITANCE EXTRACTION

TECHNIQUE.

This section presented a new approach based on using periodic orthogo-

nal wavelets as the basis functions for expansion of integral equation into

TABLE 4.3. Comparison of the proposed technique with previously
published in the literature.

Proposed technique Method from [67]

matrix size 640 x 640 416 x 416

nonzero entries 2200 9604

CPU time 0.05 s 0.29 s

Mflops 0.13 0.53

memory requirements 0.0336 Mb 0.146 Mb

error 0.28% 1.69%
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linear matrix equation for superficial charge density and compression of

stiffness matrix into sparse format using hard thresholding. The principal

benefits of the new technique are:

• taking full advantage of multiresolution analysis that allows projection

of superficial charge density onto subspaces spanned by scaling func-

tions and directly gives total charge on a conductor without obtaining

an accurate solution for the charge density;

• as a consequence of the above, we have applied an extremely aggressive

thresholding algorithm that compresses stiffness matrix to almost diag-

onal sparse form;

• proposed capacitance extraction algorithm is kernel independent and

has computational cost approaching O(N), versus O(NlogN) for best

available techniques and O(N3) for direct methods;

• the algorithm also provides a flexible and efficient way of trading

numerical accuracy for speed of computations.

This technique can produce a major impact on the computational cost of

large scale physical interconnect parameter extraction and other prob-

lems involving computation of integral of the solution of integral equa-

tions with singular kernels.
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4.4 CONCLUSIONS

In this chapter, we have considered applications of wavelets to the tran-

sient analysis of nonlinear circuits and analysis of distributed circuits.

Transient analysis in wavelet domain can provide accuracy comparable

with the time marching methods, however so far it has to be shown that it

can compete with time marching methods in terms of computational effi-

ciency.

Macromodelling ot multiconductor transmission lines has shown defini-

tive potential, particularly for highly nonuniform lines. However, proof of

passivity has to be provided before wavelet macromodels can be used in

EDA tools.

Wavelet methods for capacitance extraction are the most promising of the

applications considered in this chapter. Initially, wavelets generated a lot

of excitement in the EM community where integral equations always

played an important role. By combining local support with vanishing

moments, wavelets allowed stiffness matrix for such equations to be

thresholded, thus providing sparse representation for otherwise structur-

ally dense matrix. However, cost of construction of the stiffness matrix

remains the bottleneck. Numerical evaluation of the inner products for

stiffness matrix entries is often quite complicated and exceeds the cost of

actual solution of the matrix. More research in this direction has to be
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done before wavelet methods become truly competitive. The issue of pre-

dictive thresholding also needs to be explored. Predictive thresholding

[56] allows to determine locations of nonzero bands in compressed matrix

a priori and compute only those matrix elements that will not be thresh-

olded, instead of computing a full matrix and applying threshold after-

wards.
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5. SUMMARY AND FUTURE

RESEARCH

In this thesis we have considered wavelet treatment of the several compu-

tationally challenging problems arising from the field of Electronics

Design Automation. Between them, these problems cover three most

important mathematical classes of problems in circuit analysis:

• boundary value problems described by nonlinear ODEs (steady state

analysis)

• initial value problems described by nonlinear ODEs (transient analysis)

• boundary value problems described by linear and nonlinear PDEs

(interconnects macromodelling)

• boundary value problems described by the linear integral equations

(interconnects physical parameter extraction)

Steady-state analysis of nonlinear circuits is representative of the first

class of computationally extensive problems: boundary value problems

described by nonlinear ODEs. In Chapter 3, we present a new approach

to the solution of this problem that takes advantage of wavelets. Following

the traditional Harmonic Balance approach, we convert the set of coupled

nonlinear ODEs and nonlinear algebraic equations to a set of purely non-
www.manaraa.com
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linear algebraic equations. Due to the essential local support of wavelets,

the proposed approach results in a sparse representation for both the

nonlinear and linear (discretization of differential operator) components of

the Jacobian. This dramatically reduces computational cost of the analy-

sis, particularly for multitone, large scale, highly nonlinear and broad-

band circuits. Some preliminary results presented in that chapter have

been peer reviewed and accepted for publication [33], [34]. As this work

appears to be the first attempt to apply wavelets to steady state analysis,

the whole range of possibilities for future research is now wide open:

• Analysis of autonomous circuits. One can expect significant advantage

in this area as wavelet method with trivial truncation provide full cover-

age of the frequency interval, thus effectively being ready to capture

oscillations at any frequency inside the interval.

• Time domain adaptive methods. Box and diamond truncation schemes

used in Harmonic Balance allow reduction of the analysis grid in fre-

quency domain. Proposed method uses wavelet bases that are poorly

localized in frequency domain, but it’s the poor frequency domain local-

ization that allows to obtain Jacobians without dense blocks. To further

accelerate wavelet methods, time domain adaptive schemes can be

devised, similar to those that are proposed for transient analysis in

[39]. Wavelet analysis provides a systematic framework for such adap-

tive methods that solely rely on orthogonal transforms, thus preserving

convergence and stability of the non-adaptive methods, unlike Fourier
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methods that lose orthogonality when time domain adaptive schemes

are introduced.

• Frequency domain adaptive methods. It may be advantageous to

explore expansion bases arising from either complete wavelet decompo-

sition tree (Fig. 2.15) or wavelet packet trees ([6], [7]). Wavelet tree gives

dyadic resolution in frequency domain, while wavelet packet trees give

arbitrary resolution in frequency domain, so they provide a systematic

framework for approximating systems in frequency domain with arbi-

trary resolution. On the other hand, improvements in frequency

domain resolution lead to denser transform matrices (Fourier basis is

the ultimate in frequency resolution, but it’s transform matrices are

dense). Denser transform matrices lead to denser Jacobian. An opti-

mum may exist somewhere down the line, but this direction needs a lot

of exploration.

• Matrix solver. As it was shown, Jacobian matrices arising from wavelet

expansion are essentially bandlimited. Matrix solver customized for

this sparsity pattern can accelerate the method 2-4 times (see estima-

tions on page 85). Also, iterative solvers have to be explored.

• Effects of using different wavelet families. Formulation presented in

this thesis is general enough to be directly applicable to other orthogo-

nal and biorthogonal wavelet families. Experimental work have been

only done with Daubechies family because it was deemed to provide

maximum sparsity in the Jacobian (for a given number of vanishing
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moments Daubechies wavelets have minimum support). However, this

matter needs to be explored further.

Transient analysis is representative of the class of initial value problems

described by nonlinear ODEs. In this area time marching numerical inte-

gration methods ave extremely well established and although wavelet

expansion show some promise (particularly in the view of O(h4) conver-

gence), a lot more research is necessary into perfection of adaptive

schemes before wavelet methods can compete with time marching

schemes.

Interconnect macromodelling is representative of the class of boundary

value problems described by linear and nonlinear PDEs. The main obsta-

cle here is the lack of proof of passivity for wavelet expansion. Any

researcher in this area should first attempt to prove passivity, most likely,

based on the integrated congruence transform [42].

Capacitance extraction is representative of the class of deterministic

boundary value problems described by a linear integral equation. In the

most practically important case of multilayered dielectric media, this

equation has hypersingular kernel which is extremely computationally

intensive to solve. Extension of the previously described wavelet approach

potentially offers significant advantages over traditional methods in terms

of both computational cost and ability to trade accuracy for speed. These

results have been peer reviewed and published in an extensive paper [71].
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Directions for future research must include development of fast tech-

niques for computing the elements of the stiffness matrix (from arbitrary

kernels) and further research into predictive thresholding [56]. Other

directions may include development of a custom matrix solver briefly dis-

cussed in Section 4.3.6 and study of applicability of other known acceler-

ation techniques to the wavelet expansion matrix.
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APPENDIX A.

CALIBRATION OF CPU PERFORMANCE

A.1 THE BENCHMARK

For a lack of better choice, LU factorization of large dense matrices was

chosen as a benchmark for estimating the floating point performance of

target hardware/software platform. Factorization of dense matrices pro-

vides exact count of flops, which is difficult to estimate for sparse matri-

ces. However, it should be noted that sparse matrix performance will be

slower because of the overhead associated with sparse storage and

manipulations with sparse data structures.

The equivalent CPU performance is estimated by benchmarking of a

series of LU/FBS solutions of random square matrix equations of increas-

ing dimension n. For small matrix dimensions, execution time was aver-

aged over several runs in order to smooth out the influence of the discrete

system clock. It is imperative to perform the measurements on large

matrices which storage requirements significantly exceed the size of L2

cache.

Matlab code used for benchmarking is given below.
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function n = lubench(nrange, tmin)
% CPU benchmark on LU factors of large dense systems
%
% use:
% lubench(nrange, tmin)
% tmin = 10 by default
% example:
% eval(‘lubench(100:100:3000)’,’disp([datestr(now) ‘’ ‘’ lasterr]); diary off;’)

if (nargin < 1)
help lubench
error(‘no arguments supplied’)

elseif (nargin < 2)
tmin = 10

end;

diary off
format compact
warning backtrace

program = ‘lubench’;
start_t = 0; t = 0; raw_t = 0; % allocate variables
machinename = getenv(‘HOST’)
diaryfilename = [program ‘.’ machinename ‘.’ num2str(now) ‘.diary’]
diary(diaryfilename)

[s,w]=unix(‘fpversion’);
disp(w);
disp([‘matlab version: ‘ version]);
disp([datestr(now) ‘ starting ‘ program]);
diary off; diary on;% flush diary output

disp(‘========================================================================’)
disp(‘time nruns n memory megaflops avg CPU raw time’)
disp(‘========================================================================’)
for n = nrange;
   lasterr(‘’);
   A = randn(n,n); b = randn(n,1); x = randn(n,1);
   [x, t, raw_t, elflops, memory, nruns] = lusolve(A, b, x, tmin);
   mflops = elflops / t / 1.e6;
   s = sprintf(‘%s %8d %8d %10.1fk %10.1f %10.4fs %10.2fs’, ...

datestr(now,13), ...
nruns, ...
n, ...
memory/1024, ...
mflops, ...
t, ...
raw_t);

   disp(s);
   diary off; diary on;
   clear A b x
end
disp(‘========================================================================’)
disp([datestr(now) ‘ ‘ program ‘ completed’])
diary off
return

% ============================================================================
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function [x, t, raw_t, elflops, memory, nruns] = lusolve(A, b, x, tmin)

[n, m] = size(A);

% oldflops = flops;
t = 0; raw_t = 0; nruns = 0;
while t < tmin
   nruns = nruns + 1;
   tic; start_t = cputime;
   x = A\b;
   t = t + cputime - start_t; raw_t = raw_t+toc;
end; % while
elflops = (2/3*n^3 + 2*n^2);
t = t / nruns;
% elflops = flops - oldflops;
% memory = 8 * ( prod(size(A)) + prod(size(b)) + prod(size(x)) );
dummy = whos; memory = sum([dummy.bytes]);

return;

A.2 CALIBRATION RESULTS FOR SECTION 4.3.

All numerical experiments presented in Chapter 4.3 were performed on a

Sun SPARCstation with 143 MHz UltraSPARC CPU, 0.5 MB of L2 cache

and 128 MB of 71.5 MHz physical RAM. The equivalent CPU speed of this

workstation was found to be approximately 19 Mflops/s.

matlab version: 5.3.1.29215a (R11.1)
=========================================================================
time        nruns        n      memory  megaflops     avg CPU    raw time
=========================================================================
16:39:02      140      100       79.7k       19.2     0.0359s       5.33s
16:39:08       46      150      178.1k       21.1     0.1089s       5.11s
16:39:13       21      200      315.6k       22.2     0.2433s       5.11s
16:39:18       11      250      492.2k       22.7     0.4645s       5.10s
16:39:23        6      300      707.8k       21.7     0.8383s       5.04s
16:39:29        4      350      962.5k       20.4     1.4100s       5.65s
16:39:36        3      400     1256.2k       19.8     2.1733s       6.56s
16:39:42        2      450     1589.1k       19.1     3.1950s       6.40s
16:39:51        2      500     1960.9k       20.7     4.0500s       8.90s
16:39:59        1      600     2821.9k       19.9     7.2600s       7.68s
16:40:12        1      700     3839.1k       18.8    12.2000s      12.25s
16:40:31        1      800     5012.5k       18.6    18.4100s      18.69s
16:40:57        1      900     6342.2k       18.6    26.2400s      26.37s
16:41:34        1     1000     7828.1k       19.1    35.0200s      36.48s
=========================================================================
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A.3 CALIBRATION RESULTS FOR CHAPTER 3.

All numerical experiments presented in Chapter 3 were performed in Mat-

lab 6.5.0 (R13), running on a SUN Blade-1000 workstation with 900 MHz

UltraSPARC-III CPU, 8 MB L2 cache and 5 GB of physical RAM. The

equivalent CPU speed of this workstation was found to be between 600

and 800 Mflops/s.

matlab version: 6.5.0.180913a (R13)
=========================================================================
time        nruns        n      memory  megaflops     avg CPU    raw time
=========================================================================
16:33:25       92     1000     7828.2k      613.0     1.0909s     104.12s
16:35:10       12     2000    31281.3k      623.7     8.5642s     105.31s
16:37:02        4     3000    70359.4k      673.6    26.7500s     110.44s
16:39:08        2     4000   125062.6k      706.8    60.4150s     124.28s
16:41:09        1     5000   195390.7k      725.7   114.9000s     118.10s
16:44:33        1     6000   281343.8k      745.5   193.2600s     199.21s
16:49:50        1     7000   382921.9k      755.6   302.7400s     311.50s
16:57:44        1     8000   500125.1k      755.0   452.2600s     466.24s
17:08:47        1     9000   632953.2k      768.8   632.3800s     653.27s
17:23:37        1    10000   781406.3k      782.6   852.1600s     878.18s
=========================================================================
www.manaraa.com



APPENDIX B.

COMPUTING THE CONNECTION

COEFFICIENTS

Matlab code for computing connection coefficients for (bi)orthogonal local

support wavelets with vanishing moments (see section Section 3.2.3 on

page 54).

function [r, a, C] = cc(M, L)
% [r, a, C] = cc(M, L)
% connection coeffs for local support wavelets with vanishing moments
%
% M (positive integer >= 2) number of vanishing moments (including zero
%       average, so that for Haar: M=1, Daub2: M=2, etc).
%
% L (positive integer >= 4) length of decomposition LPF
%
% r (column symbolic vector of length L-2) connection coeffs:
%             +inf          d
%       r(l) = INT phi(x-l) -- phi(x) dx
%             -inf          dx
%       where phi(x) is decomposition scaling function generated by LPF with
%       filter coefficients h(1:L);
%       r(:) are accurate for h(:) normalized such that sum(h.^2) = 1;
%       generally, r(l) ~= 0 for (-L+2) <= l <= (L-2), -r(-l) = -r(l),
%       r(0) = 0;
%
% a (symbolic row vector of length L)  contains autocorrelation coefficients
%       of h(:):
%                L-n
%       a(n) = 2*SUM(h(i)*h(i+n)),      a(n) = 0 for even n;
%                i=1
%
% C is an intermediate result of computing a(:) symbolically:
%                                           2
%                               ((2 M - 1)!)
%                       C = -------------------------
%                                     2   (M - 1) 2
%                           ((M - 1)!)  (4       )
%
% Reference: G. Beylkin, On the Representation of Operators in Bases of
% Compactly Supported Wavelets, SIAM J. on Numerical Analysis, Vol.6, No.6,
% pp. 1716-1740.
%
% Requires: symbolic toolbox.
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%
% v.1.0, nsoveiko@doe.carleton.ca
% Fri Jun  2 15:40:07 EDT 2000

syms C m positive
syms a h real

M = sym(M);     % number of vanishing moments
L = sym(L);     % filter support
m = [1:M];
a = sym(zeros(1,double(L)));

C = subs( simple( sym(’((2*M-1)! / ((M-1)! * 4^(M-1)))^2’) ) );

a(double(2*m-1)) = subs( simplify( ...
         sym(’(-1)^(m-1) * C / ((M-m)! * (M+m-1)! * (2*m-1))’)));

Lr = double(L-2);
B = sym(zeros(Lr+1,Lr));
for l = 1:(Lr)
        if (2*l <= (Lr)), B(l,2*l) = B(l,2*l) + 1; end;
        for k = 1:(double(L/2))
                j = 2*l-2*k+1;

if (j <= Lr), B(l,abs(j)) = B(l,abs(j)) + sign(j)*a(2*k-1)/2; end
                j = 2*l+2*k-1;

if (j <= Lr), B(l,abs(j)) = B(l,abs(j)) + sign(j)*a(2*k-1)/2; end
        end; %  for k = 1:(L/2)
end; %  for l = 1:(L-2)
B = 2*B;
B = eye(size(B)) - B;
l = Lr+1;
B(l,:) = 2*sym(1:Lr);
r = B \ sym([zeros(Lr,1); -1]);

return
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